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Abstract. A set of well-measured, low-z, type la supernovae from the Caldn/Tololo SNe data sets
is used to determine benchmark parameters in our hydrodynamics-based, light-curve model, The
light-curve data fit fairly well in B, V, and R passbands but not as well in the I passband. The
fitting procedure, extracted best-fit model parameters, and their connection to type la SN parameters
are presented. Our benchmarked light-curve model represents an alternative to empirical template
methods for the analysis of light-curve data.
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1. Introduction

Using type Ia supernovae (hereinafter SNe Ia) as “standard candles” for cosmo-
logical distance indicators would be both accurate and simple were it not for the
slight magnitude differences within this class of SNe (Branch and Tamman, 1992).
Phillips (1993) has shown that a correlation exists between the peak magnitude
and the fall rate after peak luminosity of the SNe Ia such that the peak magni-
tude is slightly smaller for the faster declining SNe. A number of template and
parameterization procedures have been developed to take account of this variation
in order to obtain a corrected value of the peak magnitude. It is, of course, crucial
to do so when the SNe magnitudes are being used for cosmological measurements
where small errors in magnitude could translate to large errors in distance. The
reader is referred to the article by Leibundgut (2001, and references therein) for an
excellent review of the light-curve parameterization procedures and uncertainties
when using the SNe Ia as standard candles in cosmology. As an alternative to the
light-curve parameterization methods, we have developed a theoretical light-curve
model that is constrained by the conservation laws of hydrodynamics to allow direct
comparison between the magnitude observations and the assumed parameters of
the SN. One purpose of the present paper is to benchmark the light-curve model
by fitting it to some well-measured SNe Ia data sets and to extract certain parame-
ters for future use. The Caldn/Tololo data sets (29 light-curves) are chosen for this
purpose. A second purpose is to examine the systematic differences between the
model calculations and the observations.

The model has allowed us to quantify the observed slight magnitude variations
(those that exhibit the decreasing peak magnitude with increasing decline rate)
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and to understand the various controlling parameters of the SNe Ia, especially the
nearby SNe Ia. If the characterization low-z data are well-fit by the model, then
extension to higher-z can be considered.

Our light-curve model, hereinafter referred to as MRb, has been described previ-
ously (Mayer and Reitz, 2002). A summary of the model is presented in Section 2.
In Section 3, we compare MRb with light-curve data from the Caldn/Tololo SNe
data sets (C/TSNe) described by Hamuy et al. (19964, 1996b), obtain our “best-fits”
to a selected sample of C/TSNe and examine systematic effects in these data/model
comparisons. In Section 4, we discuss connections between some model parame-
ters. In Section 5, we provide fits to all (except two) the C/TSNe data sets and in
Section 6 we discuss some energy constraints.

We point out that our light-curve model is not a detailed simulation of the
type Ia supernova explosion and evolution such as has been carried out by, for
example, Pinto and Eastman (2000) and Hoflich, Miiller, and Khoklov (1993). Such
simulations are very important in understanding the spectra and detailed structure
of the light curves. Our model, on the other hand, is a relatively simple picture
of the explosion/hydrodynamics which allows us to quantify magnitude variations
and light-curve shape from some basic parameters of the explosion. Because it
conserves mass, momentum, and energy in a unified model description, the model
shows how the luminosity and other features of the light-curve depend upon certain
combinations of input SN/progenitor parameters. Furthermore, it shows how energy
availability (from nuclear fuel and possibly gravity) may limit the luminosity. But
because it predicts how the light-curve shape is affected by the fractional conversion
of the nuclear material to Ni-Co-Fe, the model can be used as an alternative to
the template method for the characterization of SNe Ia light curves at low-z and
high-z.

As with many physics models, our light curve model has limitations. However,
the limitations in simple models, when compared to data, often suggest refinements
in the physics and sometimes even new directions for experiments. We hope this is
the case with our MRb model.

2. The MRb Light-Curve Model

Our MRb model (Mayer and Reitz, 2002) is derived from a self-similar approx-
imation to the spherically symmetric hydrodynamic equations conserving mass,
momentum, and energy. It models the large-scale dynamics with a Gaussian den-
sity profile, a linear velocity profile and a time-dependent scale-height y(z). The
scale-height determines the time evolution of the SN expansion. Because it con-
Serves mass, momentum, and energy in a unified model description, MRb relates
the properties at later stages of expansion to the basic parameters of the progenitor
and the explosion. These parameters are the mass /m measured in units of the solar
mass, the initial radial mass scale r in units of the solar radius, the energy release E,
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(we use the parameter v = Eg,/E, where E, is the gravitational potential energy
of the progenitor just before explosion), and € which measures the fractional con-
version of the star’s mass to **Ni. The density at the center is py = 80.6m /13, and
the characteristic time is v = 354[r®/m]!/2. The temperature at the center (in eV)
[from Egs. (10) of MRb] is given by 6. = 18 670m'/2/r. We have taken m = 1.4
in all cases presented below. The normalized radial density scale y(z) is calculated
from the ordinary differential equation [Eq. (7) of MRb], given by

yi+9%/2 = (1/t)WfE) — (1 = 1/y)] (1

where f(t) is the explosion energy function: f(r) = 1 — exp(—t/t;) + fraq and
where fi.q (proportional to €) contains the Ni-Co-Fe decay chain [see MRb]. With
a numerical integration of Eq. (3) above, the total luminosity is calculated assuming
thermal radiation (see Appendix) from a surface located at Ry = 0.236nry(r)Rs
and 1s given by

Lo/Lo = 1.7 x 10°(m/r)*n* exp(=n®)[t2y§ + (4/v/2y)]/y (2)

with n fixed at n = 2.0. Finally, a bolometric correction is applied and the results
are converted to absolute magnitudes.

As discussed in the Appendix, the observed radiation spectra are clearly not
Planckian. This would appear to severely compromise our model. However, we
find that the temperature we calculate from the model yields a Planck function fit
to an observed spectrum that, on average, fits fairly well.

3. Benchmark Parameters

Using C/TSNe (Hamuy et al., 1996a,b), we have established the benchmark model
parameters by selecting the four SNe having magnitude data prior to peak light;
they are SN1992bc, SN1992bo, SN1992al, and SN19930. The first three have been
observed in the B, V, R, and 1 passbands, the last in B, V, and 1. Distance moduli
were calculated from the data in Hamuy et al. (1996a) and taking a Hubble constant
Hy = 72 km/(s Mpc). We have done least squares fits to the data sets varying the
parameters in the MRb model differential equation (see Appendix). As we had found
previously, the data sets could be well-fit with just one value, each, of r (the initial
scale size), and v (the SN explosion energy in units of its gravitational potential
energy) and m (the mass of the SN). Only the single parameter € (the fractional
mass conversion to *°Ni) had to be adjusted to fit the different SNe Ia data sets.
In Section 4, we discuss the relationships among some of these parameters. Many
more data sets having points before the peak will need to be examined to provide
more confidence in the value v = 1.30 found using the selected four SNe.
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Figure 1. The absolute magnitude data (points) and model integration (solid lines) for SN1992bc and
SN1992bo in the V, B, R, and I filterbands.

Figures 1 and 2 show the best-fits between the MRb model and the four selected
SNe data sets. The procedure was to iteratively adjust, the time zero offset of the
data and the various parameters until a minimum least squares error was achieved
inthe B, V, R, and I filterbands. As is clear from the Fi gures, the I filterband data are
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Figure 2. The absolute magnitude data (points) and model integration (solid lines) for SN1992al in
the V, B, R, and I filterbands and SN19930 in the B, V, and I passbands.

systematically anomalous but was still included in the least squares minimization.
Except for the I filterband, the fits to the data are fairly good, but they are not
perfect. Table I displays the best-fit set of benchmark parameters for the selected
SNe. For these SNe, only a small correction from z = 0 is expected. However,
we did make the appropriate small z-dependent K-corrections to our MRb model.
The bandpass filter functions used in the bolometric correction (BC) calculations

TABLE I
MRb model parameters

SN m v € r

1992bc 1.4 1.30 0.34 0.0038
1992bo 1.4 1.27 0.15 0.0038
1992al 1.4 1.32 0.29 0.0038

19930 1.4 1.29 0.17 0.0038
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(see Appendix B) were taken from Bessell (1990). Notice that values of v for the
first three selected SNe are all very close to 1.30. Unfortunately, there were no data
points in the R filter band of the fourth selected SN. However, that minimization,
even though giving v = 1.29 is also close to the model minimization with v = 1.30.
We have choosen, therefore, to fix v = 1.30 in the fits to all the C/TSNe data sets.
Obviously, more data sets with magnitude points before peak light will be very
important for determining the adequacy of this assumption.

It is clear from Figures 1 and 2 that SN1992bc is the best and most useful data
set of this group. It also has the slowest decline rate of the group. Examining all of
the figures shows a number of systematic deviations between the data and the MRb
model. First of all, the fit in V always appears to be better than in the other bands.
In B, before peak light, the model is brighter than the data, whereas in R, the model
is less bright. In I, the model and data are far apart but as in R, before peak light,
the data are brighter than the model. We have made many model runs attempting to
see if these systematic differences can be brought into closer agreement but have
not been able to do so. In the model, radiation has been assumed to be a Planck
spectrum at fixed 7.

Another important deviation between the model and the data is the discrepancy
late in the light curve. In all three bands, V, B, and R, the light-curve data lie above
the model after some 50 to 60 days depending upon the SN in question. In late
time, the stellar radiation is modified as more of the star becomes transparent. For
this reason, our data fits have made use of the points up to the inflection point
in the data plots, after which the model is not applicable. We look to incorporate
changes in SN transparency into the MRb model in order to extend it to higher-z
SNe. Furthermore, we expect that as more low-z SNe Ia data sets become available,
it should be possible to better understand the origins of the deviations between the
observations and the MRb model.

We note again that observations (Phillips, 1993) of a correlation between the peak
magnitude of the light-curve and the faster decline rate in B are clearly seen to be
reproduced in our model curve fits; they result from different fractional conversion
of the progenitor’s mass to the iron group elements. We note that there are other cor-
relations between the decline rates in the other bands as can be seen from the figures.

4. Progenitor Density and Temperature Relationship

When we started this work, we had hoped to extract more useful progenitor pa-
rameters directly from the fitting of the light-curve data and the model. However,
although the fits are fairly good, the density and central temperature at ignition in
the model cannot be uniquely determined. It is possible to show, using Egs. (1, 2),
that the luminosity (with € held constant) scales as

Ly cxmr/(v — 1). 3)
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So, for the same mass progenitor, any combination of r, v with the same value
of r/(v — 1) gives identical fits to the data. The combination listed in Table I
results in a central temperature of the progenitor, at ignition, of about 6 MeV, a
value consistent with estimates of Arnett (1969). Even though the progenitor’s
central density and temperature are not uniquely determined, the data do con-
strain them to be a combination through Eq. (3). It should be noted that the value
v = 1.30 which we obtained from the fits would change if we changed the value
of r.

Taking v = 1.30, r = 0.0038, and m = 1.4 converts the MRb model of Section
2 to a one parameter system depending only on €.

5. Light-Curve Data Fitting

The light-curve data from the C/TSNe study were fit using an iterative procedure as
follows. Guessing at the 1 = 0 SN explosion point, and a value for ¢, we calculated
the sum of the squares of the errors (sse), in magnitudes, between the model and
the data in the available filter bands with A = apsseB +aysseV +agsseR +a;ssel
where the as are the fractional number of total data points in a given filter band. The
sum was minimized by varying ¢ and then a new starting ¢+ = 0 point was chosen.
Iterating in this fashion resulted in well-behaved minimum in all cases examined
with the proviso that only points before about 60 days after the explosion were
employed. Table IT shows the results from fitting our MRb model to the C/TSNe
data base except for SN1992K and SN19921J. The data points for these latter two SNe
were too late to be used with the model. In Table 11, we display the sum of the squares
of the errors in each filter band (sseB, sseV, sseR, and ssel), the root-mean square
error (rmse in magnitudes) is given by rmse = (sseB + sseV + sseR -+ ssel)!/2, the
number of data points used in the minimization (ndpt), and finally, the root mean
square error per data point.

There are substantial differences in the quality of the model fits in the C/TSNe
data sets as can be seen in Table II. However, the average rms errors per data point
are generally not very large, less than 0.04 magnitudes. And the actual data sets
for all these cases fit the light curves predicted by the model fairly well. Figure 3
displays the model-data fits for five additional SNe form C/TSNe data sets. We note
here again that the only parameter having been adjusted for these fits was the value
of €. From the best-fit data shown in Table I, we find the frequency of occurence at
different values of € in these low-z SNe. There were 10 having 0.14 <€ <0.19,9
having 0.20 < € < 0.25,4 having 0.26 < ¢ < 0.30, and 4 having 0.30 < ¢ < 0.34.
We have examined the data in Table II for possible correlations with z, for example,
but haven’t found any.

A single data set fit represents many thousands of iterative numerical integrations
of the model differential equations — a formidable task for large scale hydrodynamic
simulations.
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Figure 3. The absolute magnitude data (points) and model integration (solid lines) for SN1992ae and
SN1992bs in the V and B filter bands; also SN1993B, 1993ag, and 1992bp in the V, B, and I filter
bands.
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TABLE II
Data fitting results (m = 1.4, v = 1.30 for all cases)

249

SN z € sseB  sseV sseR ssel rmse  ndpt  rmse/ndpt
1990af  0.0506 0.16  0.831 0394 - - 1.11 47  0.024
19900 0.0303 0.28 0.128 0.122  0.067 0328 0.803 20 0.040
1990T  0.0404 0.22 0251 0.107 0092 0483 0889 27 0.033
1990Y  0.0391 033 0214 0.113  0.0468 0.116 0.721 26 0.028
1991ag  0.0141 0.34 0343 0.199  0.0469 0073 0.813 43 0019
1991S  0.0546 0.28 124, @119 0.099 0.096 .1.25 54 0.023
19910  0.0317 033 035 0.180  0.129  0.264 0960 48 0.02
1992ae  0.0752 0.26 1:09: 0213 - = 1.14 29 0.039
1992ag  0.0249 022 0361 0.391 - 0.011 0874 22 0.04
1992al  0.0146 029 0563 0.162 0274  0.675 129 50 0.026
1992aq  0.1018  0.17  0.669 0.204 - 1.07 1.39 37 0.038
1992au  0.0614 023 0286 0.123 - 1.11 1.23 18 0.069
1992bc  0.0202 034 258 0405 1.44 4.17 293 108 0.027
1992bg  0.0352 0.2 0.144 0.107 - 0482 0.856 32 0.027
1992bh  0.0452 022  0.123 0.129 - 0.326 0.760 36  0.021
1992bk  0.0481 0.18  0.668 0.115 - 1.15 1.39 27  0.052
1992bl  0.0437 0.18  0.765 0279 - 0.344 1.18 33 0.036
1992bo  0.0189 0.15  2.82 1.07 0.340 129 235 70 0.034
1992bp 0.0793 025 0549 0375 - 0.703 1.28 55  0.023
1992br  0.0882 0.14 1.07 0170 - - 1.11 19 0.059
1992bs  0.0637 0.21 0.114 0.0502 - - 0405 33 0.012
1992P  0.0252 0.23  0.194 0.0344 - 0.453  0.825 19 0.043
1993ag  0.049  0.19 0902 0388 - 0.866 1.47 38 0.039
1993ah  0.0297 0.20  0.166 0.090 - 0.140  0.629 13 0.048
19938 0.0707 0.19 0.077 0214 - 0493 0.885 29 0.030
1993H 0.0239 0.15 0498 0.238 0.162 0.162 1.03 50 0.021
19930  0.051 0.17 1,05 0707 - 1.38 1.7:% 60  0.030
Ave 0.0456 0.226 0.669 0248 0270  0.705 1.16 39  0.0333

6. Energy Considerations in the MRb Model

The increasing gravitational energy of the unstable contracting white dwarf (WD)
produces high temperatures which ignite C-O and subsequent nuclear reactions
which produce the explosion in the SN. If we compare the energies of the system
just before the original WD begins contraction and at a late stage of the explosion,
we can write

(V= ])Eg + Eé + Eioss = Enye

C)
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where E, 1s the gravitational potential energy of the collapsed WD just before the
explosion and £ is the gravitational energy of the WD before collapse. We have
added an Ej term (for radiation and neutrino emission) since our hydrodynamic
model does not include them in the energy balance equation. £, is the energy
produced in the nuclear reactions which convert C-O to iron-group elements.

As noted, the explosive energy in our model is given by v E, that is proportional
to v,o(;ﬂ. But (v — 1);.9(}!3 is the only combination of py and v (see Section 4) that
we can determine from fitting the theory to the data (pg is the central density of
the collapsed WD). We cannot determine pg absolutely, but since it is related to
the central temperature and this temperature must be high enough for the nuclear
reactions to proceed at a sufficiently rapid rate, py must be larger than 3 x 107g/cm?,
We expect, however, the central density to be very much higher. Nonetheless, the
first term in Eq (2) is proportional to (v — 1) ,o0 whlch is determined by our model.

It is convenient to divide all energies in Eq. (2) by the mass of the star, so
that each term represents an energy per unit mass. In SN1992bc, we have v =
1.30, r = 0.0038, pp = 2 x 10° g/em®. This yields (v — 1)Eg = 3.5 x 107 ergs/g.
With an initial central density of 4 x 10° g/cm? in the original (uncollapsed) WD,
its E" 10" ergs/g. Ejoss may be the same order of magnitude as E’ Assuming
that thele is no neutron star remnant left by the SN, the sum of these energies must
equal E, ~ 7 x 10" ergs/g. This energy, available from the nuclear conversion
of C-O material to **Ni (which powers the SN light-curve), appears to be ade-
quate. There is, of course, the possibility that a neutron-star remnant is left behind,
and its gravitational energy could provide an adclltlon source of energy for the
explosion.

7. Discussion

We have characterized the MRb model with four well-measured SNe at low-z. Other
C/TSNe data sets have been examined for testing the single parameter (¢) fitting
procedure. On all of the data sets examined, the procedure has worked quite well.
Our model, constrained by the conservation laws of hydrodynamics, represents
an alternative to empirical (and statistical) algorithms for determining absolute
magnitudes. To extend our model to higher-z, a method for calculating of the K-
corrections, sensitive to the spectral shapes, must be determined. Also, the effects
of late-time transparency of the radiating plasma has to be understood.

Although we have used a curve-fitting procedure to constrain the model pa-
rameters, we note that these parameters are physical quantities connected to the
progenitor and the explosion, yet they manifest themselves in the characteristics
of the light-curve. In addition, we find that a single parameter, ¢ (the fraction of
the progenitor mass burned to *°Ni) accurately accounts for the variation in light
output and decline rate in the data sets that we have examined, although there are
clearly systematic deviations from the model light-curves. More low-z data sets
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having sufficient data before and after peak light should help to unravel the origin
of these deviations.
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Appendix
A. THE PLANCK SPECTRUM APPROXIMATION

It has been firmly established [see Hamuy et al. (2002) and Branch et al. (2003),
and references therein] that the spectra from Type Ia SNe are far from a Planck
spectrum. So, this has raised the question as to why our Planck assumption works as
well as it does in reproducing the light-curve shapes displayed above. The answer
is that the fitting procedure determines a “best-fit” temperature as a function of time
averaged over all the various filter bands.

In Figure 4, we display a spectrum from 1999ee at peak-light in B, obtained
by Hamuy et al. (2002) along with a “best-fit” Planck spectrum with temperature
0 = 0.71eV. The Planck spectrum clearly fits poorly in many wavelength regions
but “on-average” it fits reasonably well. Our MRb model fits the light-curve data

scaled F,
0.035

0.025

0.015

0.01f
0.005 |
-
Figure 4. The optical spectrum of 1999¢e at peak-light in B and the “best-fit” Planck curve having
A = 0.71eV. The filterbands B, V, R, and I, are arrayed at the bottom of the figure.
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from the SN, at peak light in B, with a temperature, g = 0.77eV. This value is
obtained from the best-fit model for all of the data points in all filterbands. Notice that
at before peak light in B, the model temperature appears (o be somewhat higher than
the Planck-fit temperature. Still, we conclude that the Planck radiation assumption
is quite useful as a first approximation for the light-curve data fittings. The model
generally overestimates the B data points before peak lightin B, oenerally fits the V
data points fairly well, and generally underestimates the R and I data points. Some
of these differences are likely attributible to the inaccuracy of the Planck radiation
approximation by noting how the wavelength bands span across the actual spectra
and the Planck-fit in Figure 4. But some other phenomena are likely contributing
to the differences in the R and I bands.

As mentioned previously, large hydrodynamic-radiation calculations like those
of Pinto and Eastman (2000) and Hoflich, Miiller, and Khoklov (1993) will be
required to obtain detailed information about the SN radiation and explosion.

B. BOLOMETRIC AND K CORRECTIONS

We have calculated the bolometric corrections by integrating the productof a Planck
spectrum and the filter passband over wavelength for each filter. The filter bandpass
functions were those of Bessell (1990). The numerical integrations were compared
t0 a delta-function approximation (see Narlikar, 1983) and were found to be quite
accurate and easier to use in data fitting. Following Narlikar, the normalized spectral
intensity function, here a Planck distribution, is given by

100 = (15p% /e H0* A (exp p/6r — D] (5

with p = 1.24, A in microns, and @ in eV. With a delta function at 2 = X the
bolometric correction (in magnitude units) is

BC(ho, 8) = 2.5 log, [0.736/201 (k)] (6)

where A is close to the maximum transmission wavelength of the filter. Table 111
presents the Ao appropriate to each filter along with the maximum transmission
wavelength.

TABLE 111

Filter wavelengths

Filter l(] )\'m;u&
B 0.42 0.42
\Y 0.53 0.53
R 0.63 0.60
I 0.77 0.80
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The K (z, Xg) corrections are similarly found to be

K (z, M) = 2.5 log;(1 + z) — 2.5 logo[7(Ao/(1 + 2)1/1(R0)]

using the value of A¢ appropriate to each filter.
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