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We formulate a Dirac Hamiltonian for an electron in the field of a charged mag-
netic dipole, which can be solved exactly in a central field approximation. While
we find no scattering resonances, we do find three categories of bound-state solu-
tions for this Hamiltonian which may represent new electron/positron states or
possible new electromagnetic composites. One category of solution is a state with
very strong binding energygreater than the electron rest mabsit with only a

small amount of kinetic energy. This state corresponds to a classical orbit picture in
which the electric and magnetic forces are opposed and are almost balanced. No
bound states are found if the central magnetic dipole is uncharged20@®
American Institute of Physic§S0022-2488)0)03207-2

I. INTRODUCTION

Although magnetic interactions between particles in atomic and molecular physics are gener-
ally small, these forces can be comparable to the electrostatic forces at distances of the order of the
Compton wavelength and much larger at distances of a few Fermis. Furthermore, to our knowl-
edge, there are no analytiand nonperturbatiyesolutions available for magnetic interactions in a
Dirac formulation that specifically address this interesting scale size. This leads us to the question,
so far not satisfactorily answered: Can there be bound states or scattering resonances resulting
from the magnetic forces? Specifically, we are interested in the electron—positron, electron—
electron, and the electron—proton systems.

A number of authors have been concerned with the problem of magnetic interactions between
fermions. The person who has perhaps written the most about it is Berihas studied it within
the framework of semiclassical theory, the Sclinger method, Dirac theory, and coupled
Maxwell-Dirac theory. Unfortunately, there is no practical way of rigorously studying two
Fermi—Dirac particles interacting via the electromagnetic field in a nonperturbative way, so that
one is left with either studying simplified models analytically or trying to solve a two-body
equation, such as the Bethe—Salpeter equation with classical or expectation-value potentials, by a
perturbation method.

The latter approach has been used by Wong and BédReigeret al.® Spence and Var§,
and McNeil® as well as by Barut.A somewhat different approach, using other relativistic wave
functions derived by means of QED, has been carried out numerically by Spence artdary
McNeil.®

Is there experimental evidence to support the idea of a bound or scattering state arising from
magnetic interactions between particles? The most suggestive evidence appeared to come from the
anomalous electron—positron spectral lines observed in superheavy-ion collision experiments car-
ried out at GSI in DarmstadtThe origin of these lines has not been explained satisfactorily, but
is perhaps consistent with the production of a complex neutral paficleesonancewhich
decays intee*e”. The abovementioned authors have all attempted to explain the experimental
observations in terms of resonances between an electron and positron, and furthermore have
claimed a certain degree of success. Yet, recent experimental work at Argonne National
Laboratory failed to confirm the GSI data and it is now generally believed that the earlier GSI
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results are incorrect. Thus, the existence of some type'ef resonance does not seem to be
supported experimentally.

II. SEMICLASSICAL CALCULATION OF AN ELECTRON IN THE FIELD OF A CHARGED
MAGNETIC DIPOLE

Before we proceed to the Dirac equation, it is instructive to look at the problem semiclassi-
cally. The classical Hamiltonian for the particlan electron in the central field of a charged
magnetic dipole igwe assume an attractive Coulomb force

H=/c2(p—eA/c)2+mict—er. (1)

We use spherical coordinates and shall asspp*0; in fact, we shall shortly restrict the
discussion to orbits in the equatorial plane. If there were no magnetic field and the situation were
nonrelativistic,p,, (the angular momentum around the the axis of the central dipedeld be

mr?sir? 6 ¢. For our case,, is given by
py=ymr?sir? § ¢+r sind(elc) A,. 2

The Hamiltonian(1) then becomes

c? e?
Hz\/c2 24— (p,—rsind(elc) Ay)2+mict— — 3
Pr rzsinze(p¢ (elc) Ay) ] ©)
with
A,=posinglr?. 4

Consistent with our approximation thay, is zero, we take sif=1.
SincedH/d¢=0, b¢= 0, andp,=constant. We take

Pg=rti, ©)

wherex is the angular momentum quantum number. SolvB)gor B,=r sin 6¢lc, converting to
r in units of the Compton wavelength, and defining

= pol2 pg, (6)

where ug is the Bohr magneton, we get

YBy= kIt —aulr?. (7)

Here« is the fine structure constant. We can write the energyH/m ¢ in the same dimension-
less units,

e=\y?Bi+ 72,83+1—a/r, (8)

whereB,=r/c.

B,=0 for circular orbits and at the-limits of ellipical orbits, so we set this to zero here and
look for bound states for the problem defined by E@$.and(8). The most strongly bound orbits
are the circular orbits with a very smal,. From the centripetal force equation

7,8(2#=a/r—a,8¢,u/r2 9
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and Eq.(7), we find thatB,~ a/«. Then solving Eq(7) for r, we obtain two solutions; for the
more tightly-bound solution, approximately,

r=aul/x and e=1—«k/pu. (10

The second solution has= x?/« and has energy in the hydrogen atom range.
The interesting new solution here is the tighly-bound solution,(E@). It has the following
properties:

(1) The angular momentum of the bound state is supplied almost entirely by the magnetic angular
momentum, allowing for very little angular velocity and thus very little kinetic energy. The
binding energy is thus almost all electrostatic. Note that the electron is held in its orbit by
opposed electric and magnetic forces which almost balance.

(2) It is easy to demonstrate that the circular orbit solution is stable. With an attractive coulomb
force and a repulsive magnetic force, the orbit is clearly stable im th@ordinate. The only
place where there might be a problem is with respect to the coordindtée start with the
Hamiltonian, Eq.(3), add a term irp% and keep all the th@ dependence, but because the
velocities are very small we can use a nonrelativistic expansioil falow

HI96=—p, (11

and noting thap,, is a constant, we obtain, in the same dimensionless units we used before

bg _a |2ap apsirt 0, (k— a wsir? 6ir)? 17
cosf r’siné| r r Sirf 6 (12
But r~a u/ k. Therefore,
P @ _ KA(1—sir? 6)
cosé rZsing 21(1-siff )+ Sir 6 (13

is positive, and the circular orbit &= 7r/2 is stable.

(3) If we change the sign of the Coulomb term to produce a repulsive interaction, we do not get
any bound states classically. We do however, get a positive-energy(ististmancewith a
negative binding of one or momac® where the electric and magnetic forces again almost
balance and the kinetic energy is very small. This state is separated from the asymtotic region
by a large “potential barrier.”

lll. DIRAC ELECTRON IN A CHARGED-DIPOLE MAGNETIC FIELD

In this section we solve the Dirac equation for an electron moving in the field of a stationary,
charged magnetic dipole in a similar approximation to that which we used in the semiclassical
problem. The Dirac equation is,

[E—e¢+a-(cp—eA)+Bmc|¥ =0, (14

whereE is the energy. We assume that the magnetic potential is produced by a point dipole
located at the origin so th& (only A, in spherical coordinatggs given by Eq.(4). ¢ is the scalar
potential due to the electric chargap=+ e?/r.

The full solution to the Dirac equation with this vector potenfiad. (4)] is a more compli-
cated problem than the corresponding hydrogen atom problem. We propose, however, to solve it
in a “central field approximation.” That is, we assume tigj is a function ofr only, with the
angular dependence replaced by a fixed value, nartglyg) which is of order 1. In other words,
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we are restricting our analysis to solutions which tend to favor lggalues, i.e., those with
orbital angular momentum. This approximation is consistent with our semiclassical model, which
involves circular orbits.

Paralleling Schiff'§ treatment of the Dirac equation in a central field, we write

a-p—(elc)aA=a,p,+iha,Brlr—i(elc)a, Buo(sinb)/r?, (15)

wherex=j+ 3 is the angular momentum quantum number. We choose a representation in which
both the Hamiltonian and are diagonal,

_(1 0
P=lo -1

Then spinor¥ has two components which may be written

_(0 —i)
and a,= ol (16)

[ F()Ir
_(G(r)/r @n
and since
p,=—ih (dlor+1r), (18
we obtain the equations
(e+1—plr)F(r)—G'(r)—(klt—a ulr?) G(r)=0,
(19

(e—1—nlr)G(r)+F'(r)—(klr—a ulr?) F(r)=0,

where nowr is in units of the Compton wavelength {=#/mc), eis in units ofmc?, a is the fine
structure constanty= = « (+ for repulsive potential;- for attractive, andw is a dimensionless
magnetic momentin units of the Bohr magnetong). Specifically,

= po(Sin ) 2ug . (20)

Baruf had obtained one solution to Eqd.9) for the case where;=0 (i.e., no Coulomb
interaction. His solution,

F(r)=0, G(r)=(1r")exd —aulr], e=1. (21

This result suggested that there might be other solutions in the vicinig/=df (i.e., a small
amount of binding, or a positive energy resonaneben the Coulomb interaction is included.
This turns out not to be the case, and it appears that Barut's solitim only one non-zero
component of the spino¥) is an artifact.

We now proceed to solutions of Eq4.9). We assume the spinor components can be repre-
sented in the form

F(r)=exd —(au+word)/r]f(r)r <%
(22
G(r)=exgd —(ap+twr?/rlgr)r *

wheref(r) andg(r) are found to be truncated power series inFor each value ok, we have
found several solutions corresponding to differing numbers of terms in the series. In all cases, we
find that

w=+1- €. (23
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TABLE I. Coefficients forf(p) andg(p) in Eq. (26) for the two lowest order solutions.

fo fa fa Yo 91 92

1 0 0 —2bl/n —2bln+7y 0

1 —(=2b+ 77— %) 0 —2bly —2bln+ 7 —Xq(—2b+ 7= 7xy)
7 17—2%1) 77— 2%1)

These are bound-state solutions with energies betwesrt®. Because Eq23) can be written as
w=1i€e?>—1 there could possibly be oscillatory solutions corresponding to energies greater than
mc?, but we find no such solutions for repl. Furthermore, there are not solutions for=0
except for the one mentioned earl{&q. (21)].

Since all of our physically meaningful solutions correspond to energies betweedf it is
convenient to make a change of variable in EfQ). We transform top=(r/\.) J1-¢€? and
b=au+\1— €. This produces a substantial simplification in the subsequent algebra. We obtain
for Eq. (19),

F'(p)+(—«lp+blp?) F(p)—(1ixy+ nlp) G(p)=0,

(29)
G'(p)+(klp—blp?) G(p)—(xy— n/p) F(p)=0,
wherex;=(1+€)/\/1— €. Clearly,
e=(x3—1)/(1+x3). (25)
We write the solution in terms gb as
F(p)=—p "' f(p)exd —(b+p?/p],
(26)

G(p)=p "g(p) exd —(b+p?)/p],

wheref(p)=1+f,p+f,p%+--- andg(p)=go+9; p+g, p>+- - are truncated power series and
d(p) has one more term in its series than d6gs).

We start with the simplest casi(p) =1,9(p) =9go+g1p, Where the solution can be written
in simple terms,

px1=k—1*x\(k—1)%+ 9%, 2b=79’—1yx;, go=—2blyp, and g,=—-2b/y+7.

Note that there are two values loffor eachx,, one fory= + «, and one forp=— «a. As we add
terms to the series, we generate new solutions. It can be shown thaff (fihseries has terms
then

X =(k—n) =\ (k—n)>+ 77, (27)

However, the corresponding expressions flobecome successively more complicated beyond
n=1,2. Table | displays the coefficients in the first two truncated power series and Table Il, the
values ofb and #x; for the two series. Notice that there are five distinct roots for the second
series, the first two of which are identical to those of the first series.

The above solutions are not the only analytic solutions to (4). The central magnetic
dipole can be oriented in the opposite direction and this changes the sigmdtq. (24). This
procedure generates another family of solutions with

7X1=— (k+n) = J(k+n)%+ 72 (28
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TABLE Il. Expressions foib and »x, for the two lowest order solutions to

Eqs.(24), rt;= 72+ (k— 1) andrt,= 77+ (k— 2)2.

b X1
%(1_,_772_,(_”1) —1+k+rty
31+ 72— k+rty) —ltk-rty
L34 pm 20—ty (A IV IR 24ttty
Kot g 2t 1ty BT IR AT 2tarty
33+ 72— 2k rty+ (k- 3)2+ 277 —Arty) —2+ kIt

There is a relationship between these solutions and the previous family of solutions; each new
solution is obtained from a previous one by simultaneously chandingG, G—F,
k— — Kk, X;—1/X; and attractive Coulomb potentiab repulsive Coulomb potential.

From the numerical evaluations, we find that many of the “solutions” must be discarded.
Some correspond to complex or negativealues. Others correspond to unphysically large values
of u. The physically acceptable solutions fall into three categories; a groap @twith b (or u
valueg of the order of one Bohr magneton, and a grdomstly with attractive Coulomb inter-
action clustering neae=1 (i.e., m¢?) with magnetic moments in the fractional Bohr magneton
range, and a groufmostly with repulsive Coulomb interactipmeare= —1, again in the frac-
tional Bohr magneton range.

A few representative evaluations for some physically acceptable solutions are presented in
Table Il for x values of 2, 1,—1, —2. These were generated from E@87) and (28) with
n=1 and 2. Some additional values for energies between 0-ahchave been obtained by
numerical integration of the differential equations. We note that the rangevaiues for which
a solution of the equations exists is quite limited for each value. of

IV. PROPERTIES OF THE WAVE FUNCTIONS

A few remarks about the wave function are in order. The exgg) factor only affects the
wave function at very smalp; the distant asymptotic region is governed primarily by the
exp(—p) factor. Furthermore, in the asymptotic regiGm~ — x;F.

TABLE lIl. Solution parameters of the Dirac Hamiltonian for an electron in
the field of a magnetic dipolg with charge=e.

Attractive Coulomb Potential

K X1 b € “m

1 1 0.003676 0 0.502

12 0.5407 0.002 —0.5473 0.327

12 0.2667 0.001 —0.8673 0.275

2 1 0.0109 0 15

28 0.5 0.0054 -0.6 0.925

2 0.003649 0.0000399 —0.99997 0.75
-1 274 0.00003215 0.99997 0.604

1 548 0.00001997 0.999993 0.75

1 822 0.0000133 0.999997 0.75

2 822 0.0000222 0.999997 1.25

Repulsive Coulomb Potential
There are an equal number of repulsive Coulomb solutions with a one-
to-one correspondence to the analytic solutions found above. The
relationship between solutions 5—G, G—F, «——«, x;—1/x;, and
attractive Coulomb— repulsive.

4ndicates solutions obtained by numerical integration.



4578 J. Math. Phys., Vol. 41, No. 7, July 2000 J. R. Reitz and F. J. Mayer

100

80

60+

40+t

20t

r/Ao->

0.001 0.01 0.1 1

FIG. 1. The spinor components,andG, for the Dirac Hamiltonian solution for the case witk-0, k=1 (Table IlI, first
entry). Note that the peak irG occurs at the position of the circular orbit of semiclassical theory, naniély,
=a ulk.

Consider the cases from Table IIl with=0; because of the exp(p) factor these two solu-
tions extend out to the order of the Compton wavelength. A plot of the two spinor compoRents,
andG for the e=0,k=1, (attractive solution are shown in Fig. 1. Notice that the wave function
is strongly confined to a distance of less than a Compton wavelength, and that thénp8&alkor
example occurs even further in, gi=b.

The solutions fork=2 with e=0 and—0.99997 show a similar behavior, both having peaks
in G at p=b/2. In fact, other solutions corresponding to #tractive Coulomb potential show
similar behavior, with a peak is (or a principal peak irG) at p=b/x. Because botlp andb
contain the factor/1— €2 in their definitions, the peak i occurs atr/\.=aul/x, i.e., at a few
Fermis. Note that these are thmevalues of the classical orbits found in Sec. I. All of these
solutions correspond to cases where0, and thus correspond to solutions where the wave
function is concentrated at large

Equations(24) were integrated numerically for a number @o¥alues between 0 and1, and
the results generated solutions for other valueg ¢$ee Table Il]. These solutions were similar
in form to the analytic solutions discussed above and provided a rangevafues of about a
factor of 2 for each value ok.

The second group of eigenstates, which are clusteredesedrand correspond in most cases
to an attractive Coulomb potential is entirely different from the above. Because
=(r/\.) V1— €2 these states extend out to or beyond the Bohr radius. Let us look now at the
spinor components for the cage= — 1, e= +0.99997, which we display in Fig. 2. The peaks in
F andG occur neap=1 which in this case occurs at= 137\, i.e., at the Bohr radius. There is
evidence of a peak associated wlithbut it is very small compared to the main pealpatl. And
except for the expfb/p) factor (which does not play an important rolthe wave function looks
like a hydrogen atom solution; in fact, the binding energy of the state(is?/2)mc?. It would
appear that in this group of states the magnetic interaction does not play a major role in binding,
but instead acts as a perturbation on the Coulomb energy solutions. This category of solutions can
also be extended by numerical integration to provide solutions for other valyeshoivever, the
range of allowed energies is very small, thevalues varying by less than 0.1% farvalues less
than 10. These solutions cannot be extended to join the category 1 solutions; note that they satisfy
a different differential equatiotnamely, one withb replaced by—b).

What about the solutions corresponding teepulsiveCoulomb interaction? For these solu-
tions the F-function dominated(i.e., is much larger thars,) and most cases correspond to
negativex and cluster in energy nea= — 1. Consider the solution fot=1, e= —0.99997, the
repulsiveanalog of the solution shown in Fig. 2. How is it that an eigenstate that is concentrated
in the Bohr-radius region with a modest magnetic dipole interaction can have such a strong
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FIG. 2. The spinor components for the Dirac Hamiltonian solution for the caseewith99997,x= — 1 at the Bohr scale
(a) and the Fermi scaléb). Note that the wave function is peaked out at the Bohr radius. This wave function is the
attractive analog of a solution using=1 and line 3 of Table II.

binding,E~—mc® ? The answer, we believe, is that these repulsive Coulomb states correspond to
something else—they are associated with the negative energy states of the Dirac equation and
represent attractive Coulomb interaction for these states, with energies measured with respect to
—mc. To help understand this we combine the two equatid®s into one equation fos and

get a Schrodinger-type equation; we find the dominant contributions t& th¥/ .4(r) term are

k(k+1l) 2au(k+1l) a?u? 2ae
— +

2
—1- r2 r3 4 - (29

r r

We note several thing$l) x and u must change sign together in order to maintain the sign of the
magnetic term (1), (2) if we replacee by — e we get the same solution provided we change the
sign of the Coulomb term.

Finally, it is instructive to calculate the average velocity for a typical solution to our Dirac
Hamiltonian. The average velocity in thgdirection is given byv ) =c(a,4) and,az=i a;,f.
The calculated velocities are all 0©%r less, and interestingly, not even close to relativistic.

V. SUMMARY OF RESULTS

Our solutions only partially support the results and speculations of Bavhy conjectured
that magnetic interactions should play a dominant role in the binding of Fermi—Dirac particles
(electrons, protons, ejcat small distances. In most case Barut worked with the second-order
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differential equation and an effective potential; here the “magnetic potentiat®(1érm is quite

large and negative at short range and the kinetic energy is also large. But Barut does not carry his
results through numerically for a specific particle system. Now, we do find bound states of an
electron in the field of a charged magnetic dipole, but the range of parameters is much more
limited than one would expect from Barut’s publications. For example, we do not find solutions of
our Dirac Hamiltonian for the case where the central dipole magnetic moment is very(srgall

a few nuclear magnetopsTherefore, these results do not appear to apply to the electron—proton
system. We have not found any solutions either with the magnetic dipole having zero Glearge

no electric field. In addition we do not find any scattering resonance states within the solution set
for this Hamiltonian(although, classically, we expect a scattering resonance when the Coulomb
term is repulsive

We do, however, find physically acceptable solutions when the central dipole magnetic mo-
ment is of the order of one Bohr magneton, so that these results could represghetheystem.

But there are some difficulties with this interpretation; the electron and positron are not treated on
an equal footing, and there is no orbit-orbit interaction in our model. Interestingly, although the
binding energy of these states is quite large, the kinetic energy is not large at all, i.e., not
relativistic. Therefore, the expected retardation effects in a more exact theory may not play such
an important role in these states.

The problem we have solved is that of an electron in the field of a heavy charged particle with
a magnetic moment; however, the magnetic moment of the heavy particle is large—of the order of
that of the electron. Furthermore, there is a simple classical picture for this Dirac problem—the
electron is held in its orbit by electric and magnetic forces, and in the strongly—bound cases the
forces are opposed and almost balanced. This solution cannot be simply extended to the equal
mass, relativistic electron—positron system, but since the kinetic energy of this solution is very
small the results are suggestive that there might be a tightly-bound state for the electron and
positron where part of the forces are magnetic in origin.

In this paper, we have exhibited a number of analytic solutions to our postulated Dirac—
Hamiltonian. In addition, there are solutions corresponding to other valugsfof the energy
range 0 to— m ¢ which are obtained by numerical integration of the differential equations so that
we are not limited to the precise values of the analytic solutions. The most interesting solutions
that we find are these strongly-bound states, but the second group of eigenstates clustering around
e=1 deserve to be studied more fully. Do they admit solutidmg numerical integrationfor
much smaller magnetic moments, and do they go over to hydrogen-atom type solutions? We
should also mention the analytic solutions we found for very large magnetic moments, and which
we rejected as unphysical. It is possible that these solutions could be extended by numerical
integration of the differential equations to cases with smdbei still large magnetic moments.

They might correspond to particles yet to be discovered.

More investigations are required, not only to determine if there are other solutions to this
Dirac Hamiltonian, but also to establish the meaning of the solutions which we have found. Do
they represent bound states of the electron and positron or could they perhaps represent a “com-
posite” model of some “fundamental” particle? With appropriate change of scale, the results
obtained can be applied to other Fermi—Dirac particles. The solutions can also be extended to the
case where the central dipole has a charge greater than the electron charge; but if its charge is
increased, then the magnetic moment must increase also.

ACKNOWLEDGMENT

The authors would like to thank Professor Cyrus C. Taylor for reading an early version of the
manuscript and for valuable suggestions.



J. Math. Phys., Vol. 41, No. 7, July 2000 New electromagnetic bound states 4581

APPENDIX

Our Dirac equation, Eq.19) can be obtained from another situation, namely, from the inter-
action of the anomalous magnetic moment of the electron with the Coulomb field of a central
particlel® The central particle does not have to have a magnetic moment.

We add the termiuugy”y”F, , to the covariant form of Eq(14), where u is now the
dimensionless magnetic moment correction. Keeping only tRgsecomponents which relate to
the electric field, we find that Eq14) reduces to Eq(19).
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