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We formulate a Dirac Hamiltonian for an electron in the field of a charged mag-
netic dipole, which can be solved exactly in a central field approximation. While
we find no scattering resonances, we do find three categories of bound-state solu-
tions for this Hamiltonian which may represent new electron/positron states or
possible new electromagnetic composites. One category of solution is a state with
very strong binding energy~greater than the electron rest mass! but with only a
small amount of kinetic energy. This state corresponds to a classical orbit picture in
which the electric and magnetic forces are opposed and are almost balanced. No
bound states are found if the central magnetic dipole is uncharged. ©2000
American Institute of Physics.@S0022-2488~00!03207-2#

I. INTRODUCTION

Although magnetic interactions between particles in atomic and molecular physics are gener-
ally small, these forces can be comparable to the electrostatic forces at distances of the order of the
Compton wavelength and much larger at distances of a few Fermis. Furthermore, to our knowl-
edge, there are no analytic~and nonperturbative! solutions available for magnetic interactions in a
Dirac formulation that specifically address this interesting scale size. This leads us to the question,
so far not satisfactorily answered: Can there be bound states or scattering resonances resulting
from the magnetic forces? Specifically, we are interested in the electron–positron, electron–
electron, and the electron–proton systems.

A number of authors have been concerned with the problem of magnetic interactions between
fermions. The person who has perhaps written the most about it is Barut.1 He has studied it within
the framework of semiclassical theory, the Schro¨dinger method, Dirac theory, and coupled
Maxwell–Dirac theory. Unfortunately, there is no practical way of rigorously studying two
Fermi–Dirac particles interacting via the electromagnetic field in a nonperturbative way, so that
one is left with either studying simplified models analytically or trying to solve a two-body
equation, such as the Bethe–Salpeter equation with classical or expectation-value potentials, by a
perturbation method.

The latter approach has been used by Wong and Becker,2 Geigeret al.,3 Spence and Vary,4

and McNeil,5 as well as by Barut.1 A somewhat different approach, using other relativistic wave
functions derived by means of QED, has been carried out numerically by Spence and Vary4 and
McNeil.5

Is there experimental evidence to support the idea of a bound or scattering state arising from
magnetic interactions between particles? The most suggestive evidence appeared to come from the
anomalous electron–positron spectral lines observed in superheavy-ion collision experiments car-
ried out at GSI in Darmstadt.6 The origin of these lines has not been explained satisfactorily, but
is perhaps consistent with the production of a complex neutral particle~or resonance! which
decays intoe1e2. The abovementioned authors have all attempted to explain the experimental
observations in terms of resonances between an electron and positron, and furthermore have
claimed a certain degree of success. Yet, recent experimental work at Argonne National
Laboratory7 failed to confirm the GSI data and it is now generally believed that the earlier GSI
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results are incorrect. Thus, the existence of some type ofe1e2 resonance does not seem to be
supported experimentally.

II. SEMICLASSICAL CALCULATION OF AN ELECTRON IN THE FIELD OF A CHARGED
MAGNETIC DIPOLE

Before we proceed to the Dirac equation, it is instructive to look at the problem semiclassi-
cally. The classical Hamiltonian for the particle~an electron! in the central field of a charged
magnetic dipole is~we assume an attractive Coulomb force!

H5Ac2~p2eA/c!21m2c42e2/r . ~1!

We use spherical coordinates and shall assumepu50; in fact, we shall shortly restrict the
discussion to orbits in the equatorial plane. If there were no magnetic field and the situation were
nonrelativistic,pf ~the angular momentum around the the axis of the central dipole! would be
mr2 sin2 u ḟ. For our casepf is given by

pf5gmr2 sin2 u ḟ1r sinu~e/c! Af . ~2!

The Hamiltonian~1! then becomes

H5Ac2 pr
21

c2

r 2 sin2 u
~pf2r sinu ~e/c! Af!21m2 c42

e2

r
~3!

with

Af5m0 sinu/r 2. ~4!

Consistent with our approximation thatpu is zero, we take sinu51.
Since]H/]f50, ṗf50, andpf5constant. We take

pf5k \, ~5!

wherek is the angular momentum quantum number. Solving~2! for bf[r sinuḟ/c, converting to
r in units of the Compton wavelength, and defining

m5m0/2mB , ~6!

wheremB is the Bohr magneton, we get

gbf5k/r 2am/r 2. ~7!

Herea is the fine structure constant. We can write the energy«5H/m c2 in the same dimension-
less units,

«5Ag2b r
21g2bf

2 112a/r , ~8!

whereb r5 ṙ /c.
b r50 for circular orbits and at ther -limits of ellipical orbits, so we set this to zero here and

look for bound states for the problem defined by Eqs.~7! and~8!. The most strongly bound orbits
are the circular orbits with a very smallbf . From the centripetal force equation

gbf
2 5a/r 2abfm/r 2 ~9!
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and Eq.~7!, we find thatbf'a/k. Then solving Eq.~7! for r , we obtain two solutions; for the
more tightly-bound solution, approximately,

r 5am/k and «512k/m. ~10!

The second solution hasr'k2/a and has energy in the hydrogen atom range.
The interesting new solution here is the tighly-bound solution, Eq.~10!. It has the following

properties:

~1! The angular momentum of the bound state is supplied almost entirely by the magnetic angular
momentum, allowing for very little angular velocity and thus very little kinetic energy. The
binding energy is thus almost all electrostatic. Note that the electron is held in its orbit by
opposed electric and magnetic forces which almost balance.

~2! It is easy to demonstrate that the circular orbit solution is stable. With an attractive coulomb
force and a repulsive magnetic force, the orbit is clearly stable in ther coordinate. The only
place where there might be a problem is with respect to the coordinateu. We start with the
Hamiltonian, Eq.~3!, add a term inpu

2 and keep all the theu dependence, but because the
velocities are very small we can use a nonrelativistic expansion forH. Now

]H/]u52ṗu ~11!

and noting thatpf is a constant, we obtain, in the same dimensionless units we used before

ṗu

cosu
5

a

r2 sinu F2am

r Sk2
a m sin2 u

r D1 ~k2 a m sin2 u/r!2

sin2 u G. ~12!

But r'a m/k. Therefore,

ṗu

cosu
5

a

r2 sinu F2k2~12sin2 u!1
k2~12sin2 u!2

sin2 u G ~13!

is positive, and the circular orbit atu5p/2 is stable.
~3! If we change the sign of the Coulomb term to produce a repulsive interaction, we do not get

any bound states classically. We do however, get a positive-energy state~resonance! with a
negative binding of one or moremc2 where the electric and magnetic forces again almost
balance and the kinetic energy is very small. This state is separated from the asymtotic region
by a large ‘‘potential barrier.’’

III. DIRAC ELECTRON IN A CHARGED-DIPOLE MAGNETIC FIELD

In this section we solve the Dirac equation for an electron moving in the field of a stationary,
charged magnetic dipole in a similar approximation to that which we used in the semiclassical
problem. The Dirac equation is,

@E2ew1a•~cp2eA!1bmc2#C50, ~14!

whereE is the energy. We assume that the magnetic potential is produced by a point dipolem0

located at the origin so theA ~only Af in spherical coordinates! is given by Eq.~4!. w is the scalar
potential due to the electric charge,ew56 e2/r .

The full solution to the Dirac equation with this vector potential@Eq. ~4!# is a more compli-
cated problem than the corresponding hydrogen atom problem. We propose, however, to solve it
in a ‘‘central field approximation.’’ That is, we assume thatAf is a function ofr only, with the
angular dependence replaced by a fixed value, namely,^sinu& which is of order 1. In other words,
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we are restricting our analysis to solutions which tend to favor largeu-values, i.e., those with
orbital angular momentum. This approximation is consistent with our semiclassical model, which
involves circular orbits.

Paralleling Schiff’s8 treatment of the Dirac equation in a central field, we write

a"p2~e/c!a"A5a rpr1 i\a rbk/r 2 i ~e/c!a rbm0^sinu&/r 2, ~15!

wherek5 j 1 1
2 is the angular momentum quantum number. We choose a representation in which

both the Hamiltonian andk are diagonal,

b5S 1 0

0 21D and a r5S 0 2 i

i 0 D . ~16!

Then spinorC has two components which may be written

C5S F~r !/r
G~r !/r D ~17!

and since

pr52 i\ ~]/]r 11/r !, ~18!

we obtain the equations

~e112h/r ! F~r !2G8~r !2~k/r 2a m/r 2! G~r !50,
~19!

~e212h/r ! G~r !1F8~r !2~k/r 2a m/r 2! F~r !50,

where nowr is in units of the Compton wavelength (lc5\/mc), e is in units ofmc2, a is the fine
structure constant,h56 a ~1 for repulsive potential,2 for attractive!, andm is a dimensionless
magnetic moment~in units of the Bohr magneton,mB). Specifically,

m5m0^sinu&/2mB . ~20!

Barut9 had obtained one solution to Eqs.~19! for the case whereh50 ~i.e., no Coulomb
interaction!. His solution,

F~r !50, G~r !5~1/r k!exp@2am/r #, e51. ~21!

This result suggested that there might be other solutions in the vicinity ofe51 ~i.e., a small
amount of binding, or a positive energy resonance! when the Coulomb interaction is included.
This turns out not to be the case, and it appears that Barut’s solution~with only one non-zero
component of the spinorC! is an artifact.

We now proceed to solutions of Eqs.~19!. We assume the spinor components can be repre-
sented in the form

F~r !5exp@2~a m1v r 2!/r # f ~r ! r 2k11,
~22!

G~r !5exp@2~a m1v r 2!/r # g~r !r 2k,

where f (r ) andg(r ) are found to be truncated power series inr . For each value ofk, we have
found several solutions corresponding to differing numbers of terms in the series. In all cases, we
find that

v5A12e2. ~23!
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These are bound-state solutions with energies between6 mc2. Because Eq.~23! can be written as

v5 iAe221 there could possibly be oscillatory solutions corresponding to energies greater than
mc2, but we find no such solutions for realm. Furthermore, there are not solutions forv50
except for the one mentioned earlier@Eq. ~21!#.

Since all of our physically meaningful solutions correspond to energies between6mc2 it is
convenient to make a change of variable in Eq.~19!. We transform tor5(r /lc)A12e2 and

b5amA12e2. This produces a substantial simplification in the subsequent algebra. We obtain
for Eq. ~19!,

F8~r!1~2k/r1b/r2! F~r!2~1/x11h/r! G~r!50,
~24!

G8~r!1~k/r2b/r2! G~r!2~x12h/r! F~r!50,

wherex15(11e)/A12e2. Clearly,

e5~x1
221!/~11x1

2!. ~25!

We write the solution in terms ofr as

F~r!52r2k11 f ~r! exp@2~b1r2!/r#,
~26!

G~r!5r2k g~r! exp@2~b1r2!/r#,

wheref (r)511 f 1r1 f 2r21¯ andg(r)5g01g1 r1g2 r21¯ are truncated power series and
g(r) has one more term in its series than doesf (r).

We start with the simplest case,f (r)51,g(r)5g01g1r, where the solution can be written
in simple terms,

hx15k216A~k21!21h2, 2b5h22hx1 , g0522 b/h, and g1522 b/h1h.

Note that there are two values ofb for eachx1 , one forh51a, and one forh52a. As we add
terms to the series, we generate new solutions. It can be shown that if thef (r) series hasn terms
then

hx15~k2n!6A~k2n!21h2. ~27!

However, the corresponding expressions forb become successively more complicated beyond
n51,2. Table I displays the coefficients in the first two truncated power series and Table II, the
values ofb and hx1 for the two series. Notice that there are five distinct roots for the second
series, the first two of which are identical to those of the first series.

The above solutions are not the only analytic solutions to Eq.~24!. The central magnetic
dipole can be oriented in the opposite direction and this changes the sign ofb in Eq. ~24!. This
procedure generates another family of solutions with

hx152 ~k1n!6A~k1n!21h2. ~28!

TABLE I. Coefficients forf (r) andg(r) in Eq. ~26! for the two lowest order solutions.

f 0 f 1 f 2 g0 g1 g2

1 0 0 22b/h 22b/h1h 0

1 2~22b1h22hx1!

h~h22x1!
0 22b/h 22b/h1h 2x1~22b1h22hx1!

h~h22x1!
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There is a relationship between these solutions and the previous family of solutions; each new
solution is obtained from a previous one by simultaneously changingF→G, G→F,
k→2k, x1→1/x1 and attractive Coulomb potential↔ repulsive Coulomb potential.

From the numerical evaluations, we find that many of the ‘‘solutions’’ must be discarded.
Some correspond to complex or negativeb values. Others correspond to unphysically large values
of m. The physically acceptable solutions fall into three categories; a group ate50 with b ~or m
values! of the order of one Bohr magneton, and a group~mostly with attractive Coulomb inter-
action! clustering neare51 ~i.e., mc2) with magnetic moments in the fractional Bohr magneton
range, and a group~mostly with repulsive Coulomb interaction! neare521, again in the frac-
tional Bohr magneton range.

A few representative evaluations for some physically acceptable solutions are presented in
Table III for k values of 2, 1,21, 22. These were generated from Eqs.~27! and ~28! with
n51 and 2. Some additional values for energies between 0 and21 have been obtained by
numerical integration of the differential equations. We note that the range ofm values for which
a solution of the equations exists is quite limited for each value ofk.

IV. PROPERTIES OF THE WAVE FUNCTIONS

A few remarks about the wave function are in order. The exp(2b/r) factor only affects the
wave function at very smallr; the distant asymptotic region is governed primarily by the
exp(2r) factor. Furthermore, in the asymptotic regionG'2x1F.

TABLE II. Expressions forb andhx1 for the two lowest order solutions to
Eqs.~24!, rt 15Ah21(k21)2 and rt 25Ah21(k22)2.

b hx1
1
2(11h22k2rt 1) 211k1rt 1

1
2(11h22k1rt 1) 211k2rt 1

1
2(31h222k2rt 21A(k23)212h224rt 2) 221k1rt 2

1
2(31h222k1rt 22A(k23)212h224rt 2) 221k2rt 2

1
2(31h222k1rt 21A(k23)212h224rt 2) 221k2rt 2

TABLE III. Solution parameters of the Dirac Hamiltonian for an electron in
the field of a magnetic dipolem with charge6e.

Attractive Coulomb Potential
k x1 b e m

1 1 0.003676 0 0.502
1a 0.5407 0.002 20.5473 0.327
1a 0.2667 0.001 20.8673 0.275
2 1 0.0109 0 1.5
2a 0.5 0.0054 20.6 0.925
2 0.003649 0.0000399 20.99997 0.75

21 274 0.00003215 0.99997 0.604
1 548 0.00001997 0.999993 0.75
1 822 0.0000133 0.999997 0.75
2 822 0.0000222 0.999997 1.25

Repulsive Coulomb Potential
There are an equal number of repulsive Coulomb solutions with a one-

to-one correspondence to the analytic solutions found above. The
relationship between solutions isF→G, G→F, k→2k, x1→1/x1 , and
attractive Coulomb→ repulsive.

aIndicates solutions obtained by numerical integration.
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Consider the cases from Table III withe50; because of the exp(2r) factor these two solu-
tions extend out to the order of the Compton wavelength. A plot of the two spinor components,F
andG for the e50,k51, ~attractive! solution are shown in Fig. 1. Notice that the wave function
is strongly confined to a distance of less than a Compton wavelength, and that the peak~in G, for
example! occurs even further in, atr5b.

The solutions fork52 with e50 and20.99997 show a similar behavior, both having peaks
in G at r5b/2. In fact, other solutions corresponding to theattractiveCoulomb potential show
similar behavior, with a peak inG ~or a principal peak inG) at r5b/k. Because bothr andb
contain the factorA12e2 in their definitions, the peak inG occurs atr /lc5am/k, i.e., at a few
Fermis. Note that these are ther -values of the classical orbits found in Sec. I. All of these
solutions correspond to cases wherelÞ0, and thus correspond to solutions where the wave
function is concentrated at largeu.

Equations~24! were integrated numerically for a number ofe values between 0 and21, and
the results generated solutions for other values ofm ~see Table III!. These solutions were similar
in form to the analytic solutions discussed above and provided a range ofm values of about a
factor of 2 for each value ofk.

The second group of eigenstates, which are clustered neare51 and correspond in most cases
to an attractive Coulomb potential is entirely different from the above. Becauser
5(r /lc) A12e2 these states extend out to or beyond the Bohr radius. Let us look now at the
spinor components for the casek521, e510.99997, which we display in Fig. 2. The peaks in
F andG occur nearr51 which in this case occurs atr 5137lc , i.e., at the Bohr radius. There is
evidence of a peak associated withb, but it is very small compared to the main peak atr51. And
except for the exp(2b/r) factor ~which does not play an important role! the wave function looks
like a hydrogen atom solution; in fact, the binding energy of the state is2(a2/2)mc2. It would
appear that in this group of states the magnetic interaction does not play a major role in binding,
but instead acts as a perturbation on the Coulomb energy solutions. This category of solutions can
also be extended by numerical integration to provide solutions for other values ofm; however, the
range of allowed energies is very small, thex1 values varying by less than 0.1% form values less
than 10. These solutions cannot be extended to join the category 1 solutions; note that they satisfy
a different differential equation~namely, one withb replaced by2b).

What about the solutions corresponding to arepulsiveCoulomb interaction? For these solu-
tions the F-function dominates~i.e., is much larger thanG,) and most cases correspond to
negativek and cluster in energy neare521. Consider the solution fork51, e520.99997, the
repulsiveanalog of the solution shown in Fig. 2. How is it that an eigenstate that is concentrated
in the Bohr-radius region with a modest magnetic dipole interaction can have such a strong

FIG. 1. The spinor components,F andG, for the Dirac Hamiltonian solution for the case withe50, k51 ~Table III, first
entry!. Note that the peak inG occurs at the position of the circular orbit of semiclassical theory, namely,r /lc

5a m/k.
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binding,E'2mc2 ? The answer, we believe, is that these repulsive Coulomb states correspond to
something else—they are associated with the negative energy states of the Dirac equation and
represent attractive Coulomb interaction for these states, with energies measured with respect to
2mc2. To help understand this we combine the two equations~19! into one equation forG and
get a Schrodinger-type equation; we find the dominant contributions to theE 2Veff(r) term are

e2212
k~k11!

r 2 1
2 a m ~k11!

r 3 2
a2 m2

r 4 6
2 a e

r
. ~29!

We note several things:~1! k andm must change sign together in order to maintain the sign of the
magnetic term (1/r 3), ~2! if we replacee by 2e we get the same solution provided we change the
sign of the Coulomb term.

Finally, it is instructive to calculate the average velocity for a typical solution to our Dirac
Hamiltonian. The average velocity in thef direction is given bŷ vf&5c^af& and,af5 i a rb.
The calculated velocities are all 0.05c or less, and interestingly, not even close to relativistic.

V. SUMMARY OF RESULTS

Our solutions only partially support the results and speculations of Barut,1 who conjectured
that magnetic interactions should play a dominant role in the binding of Fermi–Dirac particles
~electrons, protons, etc.! at small distances. In most case Barut worked with the second-order

FIG. 2. The spinor components for the Dirac Hamiltonian solution for the case withe50.99997,k521 at the Bohr scale
~a! and the Fermi scale~b!. Note that the wave function is peaked out at the Bohr radius. This wave function is the
attractive analog of a solution usingk51 and line 3 of Table II.
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differential equation and an effective potential; here the ‘‘magnetic potential’’ (1/r 3) term is quite
large and negative at short range and the kinetic energy is also large. But Barut does not carry his
results through numerically for a specific particle system. Now, we do find bound states of an
electron in the field of a charged magnetic dipole, but the range of parameters is much more
limited than one would expect from Barut’s publications. For example, we do not find solutions of
our Dirac Hamiltonian for the case where the central dipole magnetic moment is very small~e.g.,
a few nuclear magnetons!. Therefore, these results do not appear to apply to the electron–proton
system. We have not found any solutions either with the magnetic dipole having zero charge~i.e.,
no electric field!. In addition we do not find any scattering resonance states within the solution set
for this Hamiltonian~although, classically, we expect a scattering resonance when the Coulomb
term is repulsive!.

We do, however, find physically acceptable solutions when the central dipole magnetic mo-
ment is of the order of one Bohr magneton, so that these results could represent thee1 e2 system.
But there are some difficulties with this interpretation; the electron and positron are not treated on
an equal footing, and there is no orbit-orbit interaction in our model. Interestingly, although the
binding energy of these states is quite large, the kinetic energy is not large at all, i.e., not
relativistic. Therefore, the expected retardation effects in a more exact theory may not play such
an important role in these states.

The problem we have solved is that of an electron in the field of a heavy charged particle with
a magnetic moment; however, the magnetic moment of the heavy particle is large—of the order of
that of the electron. Furthermore, there is a simple classical picture for this Dirac problem—the
electron is held in its orbit by electric and magnetic forces, and in the strongly–bound cases the
forces are opposed and almost balanced. This solution cannot be simply extended to the equal
mass, relativistic electron–positron system, but since the kinetic energy of this solution is very
small the results are suggestive that there might be a tightly-bound state for the electron and
positron where part of the forces are magnetic in origin.

In this paper, we have exhibited a number of analytic solutions to our postulated Dirac–
Hamiltonian. In addition, there are solutions corresponding to other values ofm for the energy
range 0 to2m c2 which are obtained by numerical integration of the differential equations so that
we are not limited to the precisem values of the analytic solutions. The most interesting solutions
that we find are these strongly-bound states, but the second group of eigenstates clustering around
e51 deserve to be studied more fully. Do they admit solutions~by numerical integration! for
much smaller magnetic moments, and do they go over to hydrogen-atom type solutions? We
should also mention the analytic solutions we found for very large magnetic moments, and which
we rejected as unphysical. It is possible that these solutions could be extended by numerical
integration of the differential equations to cases with smaller~but still large! magnetic moments.
They might correspond to particles yet to be discovered.

More investigations are required, not only to determine if there are other solutions to this
Dirac Hamiltonian, but also to establish the meaning of the solutions which we have found. Do
they represent bound states of the electron and positron or could they perhaps represent a ‘‘com-
posite’’ model of some ‘‘fundamental’’ particle? With appropriate change of scale, the results
obtained can be applied to other Fermi–Dirac particles. The solutions can also be extended to the
case where the central dipole has a charge greater than the electron charge; but if its charge is
increased, then the magnetic moment must increase also.
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APPENDIX

Our Dirac equation, Eq.~19! can be obtained from another situation, namely, from the inter-
action of the anomalous magnetic moment of the electron with the Coulomb field of a central
particle.10 The central particle does not have to have a magnetic moment.

We add the termimmBgmgn Fm n to the covariant form of Eq.~14!, wherem is now the
dimensionless magnetic moment correction. Keeping only thoseFm n components which relate to
the electric field, we find that Eq.~14! reduces to Eq.~19!.

1See, e.g., A. O. Barut,‘‘Lectures on magnetic interactions of stable particles and magnetic resonances’’ inGroup Theory
and Its Applications in Physics, edited by T. H. Seligman~AIP, New York, 1980!, pp. 73–108; A. O. Barut, Z. Phys. A
336, 317 ~1990!.
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et al., Phys. Lett. B245, 133 ~1990!.

7I. Ahmedet al., Phys. Rev. Lett.75, 2658~1995!; 78, 618 ~1997!.
8L. I. Schiff, Quantum Mechanics, 2nd ed.~McGraw–Hill, New York, 1955!, p. 334, Eqs.~44.9!–~44.17!.
9A. O. Barut, op cit, p. 92.

10A. O. Barut, op cit, p. 89.
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