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Abstract

The tresino phase-transition that took place about 300 years after the big-bang, 
converted most baryons into almost equal numbers of protons and tresinos. Many 
of these become oppositely-charged rotating pairs or “rotors”. This paper examines 
the formation, evolution, disposition and observations of the protons and tresinos 
from the phase-transition to the present era. The solar corona is further examined 
within the same tresino phase-transition picture.
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1. Introduction

It is well-documented that the Standard (ΛCDM) Model of cosmology (see e.g., 
Weinberg [1]) has two large and undefined mass-energy components “dark matter” 
and “dark energy”. The Standard Model also requires a number of somewhat 
arbitrary parameters to “fit” observed data from the cosmic microwave background 
(CMB). In addition, connections to other areas of physics research, other than 
cosmology, seem slight or non-existent. For these and other reasons my (late) 
colleague John Reitz and I started examining whether a class of particles (tresinos) 
that appeared to resolve some paradoxes in other physics research areas, e.g., in 
geophysics (discussed in by us in Mayer & Reitz [2]) and in the solar corona (first 
discussed in Mayer & Reitz [3]), might be involved in the “strangeness” of the 
Standard Model. These studies resulted in our tresino phase-transition “big-bang” 
cosmology. The tresino-transition cosmology, has all of the mass-energy 
components defined. Furthermore, it connects to a number of late-time 
astrophysical observations as I detail in this paper.
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Figure 1. A classical illustration of the PTM rotor ground-state.

In our recent paper [3] we described how the tresino phase transition, in a 
critically-dense universe, transforms ordinary plasma baryons (mostly protons) into 
negatively-charged tresinos, a roughly equal number of positively-charged protons, 
and a small amount (≈ 5%) of ordinary matter. Many of the tresinos and protons 
pair-up into rotors that, given enough time, radiatively spin-down as proton–tresino 
molecules (PTMs) or “dark rotors”. The rotors are weakly interacting massive 
particles and represent our picture of “dark matter”. A classical illustration of the 
ground-state dark rotor is shown in Fig. 1 with protons in red and tresino electrons 
in green (!" is the electron Compton wavelength). In [3], we focused on the physics 
of the tresino phase-transition emphasizing the effects in the early time, during and 
just after the phase-transition. This paper examines evolutionary aspects of the 
tresino–proton plasma, the formation of the dark rotors, and finally some effects 
that dark rotors might have upon present era astrophysical and cosmological 
observations. In particular, models are presented for the sizes and numbers of rotors 
as functions of time, #, and some astrophysical observations that can be understood 
due to the rotors. As we presented in [3], the association between the tresino 
transition late in the early universe, and in the solar corona, is further examined to 
better understand the tresino and proton plasmas beyond the phase-transition era.

Readers are referred to our earlier paper (Mayer & Reitz [4]) for an introduction 
to tresino physics and Compton composites.

2. Rotor distribution model

In [3], we associated the WMAP observation of roughly 25% of the 
mass-energy of the universe to the spun-down rotors having been created at # ≈
103,000, i.e., much before the recombination era at # ≈ 1100. (See Section 9 for an 
explanation of the observed dark rotor fraction.) Note that spun-down rotors have 
dimensions less than the Bohr radius. Further, we proposed that the remaining 
mass-energy of roughly 70% had continued-on through the recombination era as 
rotors with much longer spin-down times. We also showed that the radiative 
energy-loss of the rotors was dependent upon the impact parameters at the time of 
their formation. The spin-down time scaling going as $sd = 1.9 × 10−12% 6 with $sd
in years and % the initial impact parameter in Comptons.
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Figure 2. The model rotor distribution as a function of the initial impact distance ! in Comptons. The 
start of the transition (" ≈ 103,000) and the present (" = 0) are also indicated.

To further characterize the rotor population, a simple impact parameter 
distribution model was chosen; specifically, a normalized Gaussian distribution of 
rotor impact parameters,
# (!) = (2∕

√
$!%) &−(!∕!%)

2 (1)
where !% is a scale factor that has been adjusted such that about 25% of the rotors 
lie within the region 0 ≤ ! ≤ 700. With this choice, it is straightforward to find that 
!% ≃ 3000. Fig. 2 presents this model distribution, where the pink region represents 
those rotors that have spun-down before recombination and the yellow region those 
rotors that are still spinning-down after recombination, or are otherwise dispersed 
(see Section 9). Other distribution functions produce similar results when fit in this 
way. For later reference, note that " = 0 for this model distribution obtains at ! =
4134; more is said about this below. Finally, note that with the assumed 
distribution, from integrating the number of rotors beyond " = 0, there may be 
some rotors (≈ 5%) that have not yet fully spun-down. The reader should note that 
this picture of rotor distribution has assumed that all of the tresinos and protons 
have undergone collisions, hence forming rotors close to the transition time. 
However, as I show below in Section 9, many of the tresinos and protons may have 
found a different fate in the expanding universe.

3. Late-time rotors

Begin by considering the spin-down time scaling as a function of ". Using the 
scaling derived in Section 5.1 of [3], '0 ∝ (−3 scaling, and with the time-to-"
conversion for the critically-dense universe, after resetting the “zero” of time to the 
transition at " ≈ 103,000, the rotor diameter as a function of " can be determined. 
This straightforward calculation results in the formula below,
! = !tr − ) [* + + (1 + ")−3∕2]1∕6 ≈ !tr − 4134 (1 + ")−1∕4 (2)

3 http://dx.doi.org/10.1016/j.heliyon.2015.e00039
2405-8440/$ – see front matter © 2015 The Author. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).



Article No~e00039

Figure 3. Rotors that have been formed at three different initial impact parameters: (!) "tr = 4134, 
(#) "tr = 4034, and ($) "tr = 3934. The dashed red line indicates the rotor’s minimum radius, i.e., those 
that have spun-down to the rotor’s ground state.

where "tr is the rotor’s initial impact parameter (in Comptons) at the time of the 
tresino transition; the parameters in Eq. (2) are: % = 90.1, & = −283 (this term is 
set to zero in the approximate form), and ' = 9.35 × 109. Now, using Eq. (2), it is 
possible to examine the rotors that have, or have not, completely spun-down prior 
to times closer to the present. Note that only a few rotors, those with the very 
largest initial impact parameters, are still spinning-down to become proton–tresino 
molecules (rotors). However, as we suggested in [3], new rotors can be generated at 
the surface of the (ordinary matter) stars, so in the interstellar medium, it is to be 
expected that there will be some combination of dark rotors, some from late in the 
early universe, and some from the on-going conversion of ordinary matter to dark 
matter at stellar surface (see Section 8).

There surely was a spectrum of initial impact parameters, so observing the rotors 
at some particular (, there still would be a distribution of rotors with different radii. 
For example, in Fig. 3, drawing a vertical line at, say ( = 0.4, a number of rotors of 
different diameters would be encountered. This is especially important at low-(’s as 
is clear from Fig. 3. Finally, note that the different rotor sizes will complicate 
extracting luminosity data from distant objects (see Section 7).

4. Dark rotors in interstellar space

To begin, recall that only a small percent of the universe is composed of 
ordinary matter, most of the baryons having been converted, by the tresino phase 
transition, into proton–tresino pairs (dark rotors). Therefore, it would be expected 
that there were astrophysical observations produced by this large amount of the 
interstellar dark matter. In [3], we showed that some of the ubiquitous “unidentified 
infrared bands” could be associated with re-radiation from rotors that had been 
spun-up by local energetic stellar sources. In contrast, this section focuses upon 
possible astrophysical observations of dark rotors in absorption (or extinction).
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4.1. Continuous background extinction

It has been known for decades, that interstellar “dust” presents difficulties in 
extracting information from many astrophysical observations. The reader in 
referred to the review article by Draine [5], who presents various interstellar dust 
models and their associated problems. Many models employ very small 
hydrocarbon and/or silicate particles as the absorbers of interstellar radiation. It is 
useful to examine a typical extinction curve in some detail. Fig. 3 presents an 
average interstellar extinction curve reproduced from the data in a classic paper of 
Savage & Mathis [6]; it extends through the visible from far infrared to the far 
ultraviolet. The prominent features are the extinction bump at about 5.7 eV and the 
rising background extinction as the photon energy increases through the ultraviolet. 
These features might be explained as a result of the spun-down dark rotors in our 
local neighborhood in the present era whereas the small extinction spikes in the 
infrared are associated with the rotational levels of the entire rotor as discussed in 
emission in [3].

Draine comments that “the pronounced increase in extinction as the wavelength 
changes from visible to vacuum ultraviolet cannot be accomplished without a large 
population of very small grains, with sizes ! ≤ 0.02 µm” where ! is the dust 
particle radius. This is so because the extinction scaling of the cross-section goes 
as: "ext ∝ 8#2!3∕$ (see Bohren & Huffman [7] pg. 140). The rotor’s ground state 
radius (see [3]) is about 4 × 10−10 cm, a value that easily satisfies Draine’s size 
criteria. Furthermore, note that (a) the rotors are expected to be very numerous, 
representing a large fraction of the mass in the universe (if distributed uniformly), 
hence they are much larger in numbers than are atoms and molecules, and (b) they 
are small on the scale of atoms and molecules. Rotors may then be expected to act 
as extinction centers of interstellar radiant flux.

4.2. The 2175 Å extinction line

This feature has been well studied in many astrophysical observations over the 
past few decades. It has been observed to be a quite stable component of interstellar 
measurements (Fitzpatrick & Massa [8]). These authors found that this line varies 
by less than 1% and the line width by less than 20%. This remarkable consistency 
has made dust modeling difficult as Draine has pointed out.

Now, consider the rotors as the “carriers” of the extinction line. To begin, recall 
that energy levels of the rotors, from [3], are given by,

%& =
0.325%0

&
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where !0 = 3700 eV is the Compton energy unit. So, the energy required to excite 
the next rotational level is,

Δ!" =
0.325!0

"
−

0.325!0
" + 1 .

Taking the rotor ground state as " = 14 results in an energy to excite the first 
rotational energy level Δ! = 5.72 eV or 2171 Å. As we noted in [3], the smallest 
rotor (PTM) diameter (the “ground state”) was # ≈ 14.8 Comptons as determined 
from fitting the infrared emission spectra. Therefore, the extinction at the peak of 
the line agrees reasonably well with the emission observations. But understanding 
the width of this extinction line is important and is examined next.

4.3. Rotor extinction model

The extinction of light by small particles has been detailed by Bohren & 
Huffman [7] in their Chapter 5. In particular, use is made of their Eq. (5.18) to 
derive an extinction cross-section model. In a first simplified model, the rotors will 
be considered to be spheres.

The extinction cross-section (see Bohren & Huffman [7] Eq. (5.18)) can be 
written,
$ext = 8%2(&3∕')Im(() (3)
with Im(() written as,
Im(() = 3)′′∕(2 + )′)2 (4)
where )′ and )′′ are the real and imaginary parts of the dielectric function of the 
rotors, respectively. The medium in this case is “free-space” with )′ = 1, as is the 
real part of the rotor’s dielectric function. The imaginary part of the rotor’s 
dielectric function represents the absorption throughout the optical spectrum.

A Lorentz (or natural) line-shape model is used to examine the width of the 
resonant extinction line. The normalized Lorentz line profile (see Rybicki & 
Lightman [9]) is given by,
)′′ = *+ =

Γ
4%2(+ − +0)2 + (Γ∕2)2

(5)

where Γ is the damping constant in a Drude model, and where +0 is the line center. 
In the case of a quantum jump between the two adjacent rotor levels the damping is 
quantum mechanical, a result of the Heisenberg uncertainty principle broadening 
the resonance. The rotor’s ground-state is expected to be rather broad due to the 
complex electromagnetic interaction between the proton, as it orbits the tresino, 
with the dipole magnetic fields of its bound electrons.

6 http://dx.doi.org/10.1016/j.heliyon.2015.e00039
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Figure 4. An average extinction curve (for one kilo-parsec) as a function of photon energy (eV), points 
have been joined to guide the eye.

It is now possible to write down the form of the extinction function by 
substituting Eq. (4) into Eq. (3) and converting to frequency and to energy with ! in 
electronvolts (eV)
log["0(!)∕"(!)] = #rot $ext % (6)
for a one kiloparsec path to compare it to the average extinction curve of Fig. 4. In 
Eq. (6), #rot is the number density of rotors, $ext is the extinction cross-section, and 
% = 3 × 1021 cm is the one kiloparsec path length.

4.4. Comparing the extinction model and data

Now it is possible to compare the extinction model to the data presented in 
Fig. 4. First, taking !0 = 5.72 eV and taking the ground-state rotor radius to be 
&gs = 0.77 #gs '( with #gs = 14 to find &gs = 4.1 × 10−10, about a factor of ten 
smaller than the Bohr radius. Using these values, a least-squares fit is made over 
the wavelength region of Fig. 4, noting that there is only one adjustable parameter 
in the model, namely the damping constant Γ. The best fit for the ground-state only 
model is shown as the red curve in Fig. 5.

A two-level rotor model was also examined by taking separate rotor densities 
and cross-sections as (#gs$gs + #1$1) L using both the ground-state level and the 
next rotor level. This second level (# = 15) has !0 = 5.01 eV and &1 = 4.39 ×
10−10 cm and again a least-squares fit made over the spectrum. In the two-level 
rotor case, it was found that the ground-state fraction was 41% and the second level 
was 59%. Other data from this minimization gave: #gs = 3.04 and #1 = 6.5 along 
with the separate damping constants, Γgs = 4.1 and Γ1 = 12. The green curve, in 
Fig. 5, is the least-squares fit to the two-rotor level model. Note that this model is a 
somewhat better fit across the two-resonances than is the one-resonance model. 
This is due to the second-levels slightly lower resonance energy. In both models, a 
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Figure 5. The least-squares data fits to the model: the red curve has Γ = 4.4 and !rot = 6.7. The measured 
data (as in Fig. 4) with points not connected. Also shown is the two rotor-level, least-squares fit curve in 
green. See the text for other fit parameters.

single rotor level, and the two level models, the rotor densities are comparable at 
6.7 and 10 cm−3, respectively.

The two-level fit appears to be somewhat better than the single-level fit. This 
suggests that the first level is still spinning-down; this is consistent with the results 
presented in Section 3. Furthermore, note in Fig. 5 that the measured extinction is 
low compared to the model at energies between about 7 eV and 12 eV, and it is too 
high below about 4 eV. This is not unexpected if the rotors are responsible for the 
extinction line because at the higher energies there are no rotor levels, they all lie 
below the first energy level. This is so because the energy levels difference scales 
as Δ"! ∝ "0∕(! + 3!2) (see Section 5.2 of [3]). Of course, this data fitting exercise 
does not verify our rotor model of the extinction, but it represents a clear 
alternative to the very small atomic composition most-often suggested.

Turning now to the damping constants Γ; the damping results from the rotor’s 
ground and first rotational level being broadened by the Heisenberg uncertainly 
relation. The time-scale from the broadening can be estimated as Δ# ≈ ℏ∕Γ ≈ 1.6 ×
10−16 s. That this is the relevant time-scale can be seen by comparing it to the 
rotors period of revolution, %. For the ground state, % is approximately 1.3 × 10−16

seconds, so %∕Δ# ≈ 1, thus satisfying the uncertainty relation within only a few 
rotations.

5. Dark rotor halo

It is now useful to compare the rotor density, obtained from the extinction data 
fit with other characteristic densities. With our tresino transition picture it is 
possible to estimate the rotor density that would be observed at & = 0 assuming 
(unrealistically) there had not been any late-time, non-uniform, gravitational 
effects. This density would have been approximately 2.7 × 10−6 cm−3 thus 
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indicating, if the estimates of the rotor density from extinction-fits are even close to 
being correct, that a considerable densification of the rotors must have taken place 
during the evolution of the our Milky Way galaxy.

A second useful comparison is to the galactic average proton density. Taking 
typical estimates of the mass and dimensions of our galaxy and assuming all of the 
matter to be protons, the density would be about 3000 protons cm−3. In this case, 
the rotor density is only a small fraction of the galactic average proton density. So, 
the rotor density inferred from the extinction data is much larger than its early 
universe value but much smaller than the average proton galactic density.

Given the rotor density from the above extinction fits (see Section 4), it is 
straightforward to calculate that, if the rotors were distributed uniformly within the 
observable Milky Way mass, it would amount to only about 6% of the galaxy mass, 
i.e. considering only the visible galaxy mass. If, on the other hand, the rotors were 
distributed in a uniform sphere, as has been suggested before (see e.g., Evans [10]), 
with a radius 1.2 ≤ !∕!Gal ≤ 1.5 then the ratio of rotor mass to galaxy mass 
would be between 10 and 20. So, assuming the rotors are the “carriers” of the 
extinction observations as was done above, they would then have to populate a very 
large volume surrounding our galaxy. Of course, it would be expected that the 
density of rotors was somewhat higher at the center and decreasing at larger 
distances by gravitational equilibration (e.g., see Navarro, et al., [11]).

Finally, it is instructive to consider a crude dark rotor gas “halo” by making use 
of one of Chandrasekhar’s analytic gaseous stars ([12] pg. 231). In particular, a star 
with radiation as a fraction of the total pressure supporting it and use the estimate 
of the dark rotor gas density (see Section 4) to determine a mean rotor gas 
temperature. Assume that the spherical dark matter (rotor gas) halo is centered 
upon and encloses our Milky Way galaxy; the halo is gravitationally balanced by 
the pressure of the rotor gas and radiation. Note that this crude model neglects the 
effects of rotational velocity of the halo gas. Taking the dark rotor density to be 
about 10 cm−3 from above (from Section 4), it is straightforward to calculate the 
halo radius in units of the Milky Way radius giving !Halo = " !Gal, where " is a 
multiple of the galaxy radius. Now, using Chandrasekhar’s Eq. (68) the mean rotor 
gas temperature is found to be $̄ ≈ 1.3 % & "2 keV, where % is the fraction of total 
pressure due to the rotor gas, and & = 2, is the rotor’s atomic mass. If the halo is 
primarily supported by the rotor gas, then % is close to one. So, $̄ ≈ 2.6 "2 keV or 
perhaps somewhat less if rotational energy and radiation are important. Finally, 
note that galactic rotational kinetic energies in this case would then be comparable 
to rotor gas temperatures of a few keV (e.g., see Navarro, et al., [11]).

Given the rotor gas temperature estimate, it is possible to examine the effects of 
rotor–rotor collisions.

9 http://dx.doi.org/10.1016/j.heliyon.2015.e00039
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6. Dark rotor self-interactions

The mean rotor gas temperature could affect the survival of the rotors during 
rotor–rotor collisions. In this section, a simple collision model of the 
self-interactions and rotor survivability are presented.

The reader will recall that dark rotors are composed of electromagnetically 
bound protons and tresinos. These two components are bound at about the few 
hundred eV energy level whereas the tresino with its two electrons and one proton 
are electromagnetically bound together at the 3.7 keV energy level. Direct 
collisions between two rotors is most likely to interrupt the proton–tresino (rotor) 
bond much more frequently than to disassemble the tresino into its constituent 
components. If the latter happens at keV center-of-mass energies, the electrons and 
protons may then be converted into ionized hydrogen plasma and eventually 
reassemble into neutral hydrogen. In the case that the collision breaks the 
proton/tresino bond, the two components will most likely reform into a rotor 
because of their electrostatic attraction bringing them back together, similar to the 
process by which they were initially formed late in the early universe. In the latter 
case, a new cycle of rotor spin-down will begin again with its attendant low-energy 
radiative energy loss.

6.1. Rotor collision rate

A conservative estimate of the collision cross-section is to consider the rotors as 
“hard spheres” so that !"#,"$ ≈ %("2# + "2$) for the two colliding rotors with radii 
"#,$ ≥ 7 &' , resulting in !"#,"$ ≥ 4.4 × 10−19 cm2. The cross-section for direct 
impact of the tresinos of the two rotors (classically speaking) would be 
considerably smaller due to their smaller dimensions. Taking the rotor gas 
temperature to be 5 keV and also 10 rotors/cm3, then a rotor–rotor collision rate of 
about 2 × 10−9 collisions∕s-cm3 or roughly one collision/cm3 every 16 years. But 
as mentioned, reformation of rotors is expected to maintain their numbers while 
only slowly changing the background temperature.

7. Supernovae and the accelerating universe

We stated, in [3], that our critically-dense cosmology was not consistent with an 
accelerating universe. The primary observations supporting an accelerating 
universe were the measurements of distant supernova explosions that appeared to 
be less luminous than would be expected at their observed distance. These data and 
certain theoretical arguments required there to be some type of energy called dark 
energy, with a still on-going research to understand what this energy could be. At 
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Figure 6. The upper plot shows the optical constants, ! and ", the real and imaginary parts of the refractive 
index as a function of photon energy in the case of seven resonances. The lower plot shows the optical 
constants for the case of just two resonances, as occurs much later in time.

the time that [3] was written, we had not yet understood the effects of the late-time 

rotor extinction might have upon the supernovae observations. However, since then 

it has become clear that the rotor extinction is quite important. This section 

presents a model calculation of the extinction of the supernovae luminosity due to 

the long-lived rotors still spinning-down at # ≤ 7. For the sake of clarity, the 

discussion that follows begins by looking at the resonances in the gas of rotors 
through which light from an embedded supernova must pass on its way to us.

Fig. 6 presents two plots of rotor gas resonances of prolate spheroidal shape (see 

Bohren & Huffman [7] Section 5.3) using a multiple-oscillator model (see Bohren 

& Huffman [7] Section 9.2). The plots of Fig. 6 present the results for the 

seven-resonance transitions (see Section 4.2 above) specifically, resonances at 5.72, 
5.01, 4.42, 3.92, 3.52, 3.16, and 2.86 eV in the upper plot, and just two resonances 
at 5.72 and 5.01 eV in the lower plot. Note that the first resonance at 5.72 eV is the 

transition from the rotor’s ground-state to the first rotational state (see Section 4). 
There are many other lower energy resonances as well, but these rotors will have 

spun-down at much earlier times in the late universe. The plots in Fig. 6 are 

presented in the rest frame and will, of course, be red-shifted down to # = 0. 
Importantly, these resonances are spread across the visible spectrum. Also, given 

the optical constants, it is straightforward (see Bohren & Huffman [7], pg. 227) to 
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Figure 7. Comparing model fluxes, !sm in dashed-black, and the best-fit !cd in dashed-orange; the two 
are nearly indistinguishable on this scale. The inset shows the two fluxes are close to equal over the 1 ≤
" ≤ 7 interval. Two other cases (in dashed-blue and dashed-red) are also shown with details in the text.

show that this gas of rotors is highly reflective of light in this band from a 
supernova imbedded within this gas.

From an examination of Figs. 6 & 3, it is obvious that understanding the 
resonance populations at small " is required to determine the attenuation of the 
supernovae light. This is accomplished using Eq. (2): setting # = 14, #tr =
$ 1434.2, and solving for $ gives $ = 0.0034 + (1 + ")−1∕4 ≈ (1 + ")−1∕4. So, the 
rotor density at small " is proportional to the factor (1 + ")−1∕4 and the supernovae 
luminosity viewed at " = 0 is expected to be reduced by about this factor.

It is possible now to compare the fluxes calculated using the luminosity 
distances for the Standard Model without rotor attenuation, and our critical-density 
model having Ω% = 1 with rotor attenuation. The fluxes in these models can be 
written,
!sm = &

4'(2
Lsm

and !cd = &$
4'(2

Lcd

where & is the supernovae intensity; the ()’s are the respective luminosity 
distances for the two models; $ is the attenuation factor (noted above) due to the 
rotors still spinning-down at late time. The respective luminosity distances are 
computed and displayed in Section 7.1 below.

Now, given the luminosity distances from Section 7.1, a number of flux 
calculations are compared in Fig. 7, taking & = 1. The Standard Model flux is 
shown in dashed-black. The critical density model is shown in dashed-blue with 
$ = 1 (i.e., no attenuation). The critical-density model with $ = (1 + ")−1∕4 is 
shown in dashed-red, and finally the critical-density model with $ = 0.66(1 +
")−1∕4 is shown in dashed-orange where in the latter case, a correction factor 2∕3
has been introduced that brings the rotor-attenuated, critical-density model into 
near agreement with the Standard Model. Note that the rotor-attenuated, 
critical-density model and the Standard Model are fairly close to each other over 
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most of the interval 1 ≤ ! ≤ 7 as can be seen in the inset of Fig. 7. Furthermore, 
the Standard Model is seen to be tens of percents larger for ! ≤ 1 compared to the 
critical-density model.

These luminosity comparisons are clearly not precise. However, attenuation by 
the dark rotors is a clear alternative to the Standard Model with its unknown dark 
energy.

7.1. Luminosity distances

The luminosity distances are computed and displayed in this section and 
Eqs. (7) & (8).

The papers of Hogg [16] and Wright [17], provide definitions for "# the 
luminosity distances. Following Wright, take "# = $ (1 + !)%(!) where $ =
&∕'0 and

%(!) = ∫
1

1∕(1+!)
()∕()

√
*()))

where *()) = Ω+ )−1 + )2 ΩΛ and both radiation and curvature terms have been 
dropped. Here, as usual, Ω+ and ΩΛ are the mass and vacuum energy fractions of 
critical density, respectively.

Two special cases of interest are required. The first case is the critical-density 
(Einstein–de Sitter) model taking Ω+ = 1 and ΩΛ = 0, resulting in the familiar 
result,

"# = (1 + !)(2 − 2(
√
1 + !))−1$ (7)

The second case takes Ω+ = 0.3 and ΩΛ = 0.7 (these are roughly the values 
presently used in the ΛCDM Standard Model). This case can be integrated as well 
(with help from Mathematica©) but is rather more complicated. The result is:

"# = $ (1 + !)()1 + {(1 + )2)Hy(!)Rt(!))∕()2 + (1 + !)−3) (8)
Hy(!) = 2,1 [1∕3, 1∕2, 4∕3,−)2(1 + !)3]

where Hy(!) is a Hypergeometric function, and Rt(!) is the square root,

Rt(!) =
√

(0.7 + 0.3(1 + !)3)(1 + )2(1 + !)3)(1 + !)−4

here )1 = −1.140667 and )2 = 0.4285714. The two luminosity distances given by 
Eq. (7) & (8), are used in the flux evaluations in Section 7 above.
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Figure 8. Solar corona – Image credit: Miloslav Druckmuller/SWNS.

8. Transition-driven currents and magnetic fields

In [3], we noted the similarities between the tresino transitions in the solar 
corona and in the early universe. This section further examines some implications 
of these two related transitions. In Fig. 8 the influence of streams and loops of 
currents starting at the base of the corona (where !" ≈ 109∕cm3) and extending out 
many solar radii into space is quite apparent. Some of the long filaments collapse 
into larger filaments while others appear to get tangled or form extended loops 
entangled with the solar dipole magnetic field closer to the equator. These streams 
are the result of the tresino transition’s formation of keV protons and tresinos that 
escape from the base of the corona (the escape kinetic energy is about 2 keV) 
carrying along their imbedded magnetic fields as they expand or contract under 
their self-forces. Note that in the case of two nearby streams of protons and tresinos 
moving in the same direction will repel each other whereas the same two streams 
moving in opposite directions will attract each other through their respective # × $
self-forces. Both streams are acted upon by the ambient solar dipole magnetic field 
as well. Also note that both protons and tresinos have a very long collisional range 
in the very low-density corona resulting in the strongly-entangled, 
magnetohydrodynamic atmosphere. Such chaotic evolution is no doubt also caused 
by the differing hydrodynamic initial conditions at the base of the corona from 
which the streams originate.

Those streams that are attracted to each other have a higher probability that 
protons and tresinos collide at small impact distances initiating their spin-down into 
rotors as previously described. On the other hand, those streams that are expelled, 
carrying along their magnetic fields, are less likely to collide and therefore will not 
spin-down but continue to expand in the energetic corona plasma. Depending upon 
the Mach number in a given zone, some amount of the energy from the tresino 
transition will be carried away in the proton and tresino streams as components of 
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Figure 9. The fractions of hydrodynamic energy density in solid-red and the magnetic field energy density 
in solid-black with gravitation. The fractions of hydrodynamic energy density in dashed-red and the 
magnetic field energy density in dashed-black without gravitation.

the solar wind. Note that as the solar wind expands the magnetic field carried away 
decreases leaving behind the residual proton or tresino kinetic energy.

8.1. Magnetic and kinetic energies in a torus

The solar corona exhibits many current streams and “loops” (see Fig. 9). A 
simple model for the energy partitioning in these structures is now presented. 
Consider a torus of minor radius ! and major radius " that carries a flow of 
collisionless protons (or tresinos) whose total number is #$. The magnetic energy 
is %& = (1∕2)'0(2$ and the inductance is given by '0 = )0"(Log[8 "∕!] − 7∕4), 
the current is ($ = *+#$∕(2,") and the kinetic energy -. = #$(1∕2)&$+2. The 
ratio of magnetic energy to kinetic energy is therefore,
%&∕-. = *2 )0#$(Log[8"∕!] − 7∕4)∕(4 ,2 &$ ").

Note that the velocity has canceled and that the ratio decreases with radius so 
eventually there is only kinetic energy left as the torus expands due to the / × 0
self-force. A straight current-carrying filament of radius ! and length ' gives the 
following similar result,
%&∕-. = *2 )0#$(Log[2'∕!] − 3∕4)∕(2, &$ '),

where again the velocity has canceled.

8.2. Magnetic and kinetic energies in the solar corona

This section presents a simple calculation of the fractions of magnetic field and 
kinetic energies in the solar corona. A version of the “one-zone” model presented 
in [3] is again revisited. The conservation of energy from the base of the corona 
may be written,
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!"#0 = (1 +$2)!" % &" + '2∕(8() + )$⊙!"+,∕-⊙

where the subscripts " refers to the (average) values in the corona and #0 =
3700 eV is the Compton energy unit, $ is the Mach number, and other quantities 
have their usual definitions. The term on the LHS is the tresino transition energy 
density at the base of the corona, the first term on the RHS is the hydrodynamic 
energy density, the second is the magnetic field energy density (from currents 
produced by the transition) and the third is the energy density required to overcome 
solar gravity. It is simple to evaluate the fractions representing of the three terms 
substituting approximate values for &" say ≈ 150 eV and the relevant solar 
quantities to examine how these various fractions depend upon $ . Fig. 9 shows the 
fractions of hydrodynamic and magnetic energy densities with and without the 
gravitational term.

The solar wind, tresino-transition driven, carrying along its currents and 
magnetic fields appears to be consistent with observations of the magnetic fields 
extending away from stars in galaxies (see Beck [13]).

It is expected that the same sort of extended, tangled, and chaotic streams and 
current loops would have existed at the tresino transition at . ≈ 105 in the early 
universe, much before the recombination era. The scale-size of the magnetic energy 
would be expected to be comparable to the universe scale at this era and could be a 
larger fraction of the tresino transition energy perhaps closer to $ ≈ 4 in Fig. 9. 
So, in a manner similar to that of the solar corona, the magnetic field energies will 
also be carried away in the universe’s “tresino-transition wind”. However, in 
contrast to the solar corona transition, the early universe transition is completed in 
some period of time, whereas the solar corona continues so long as the Sun has 
sufficient protons evaporating from its surface. Assuming that the tresino transition 
in the early universe is similar in its effects to that of the solar corona, it is useful to 
inquire about the later (. ≤ 105) effects upon the situation in the plasma 
continuing-on. Note that the plasma temperature at the time of the transition was 
only about 25 eV, whereas the kinetic energies of most of the expelled protons and 
tresinos (those that have not become rotors) after the transition was about 1.7 keV. 
This non-equilibrium partitioning would have persisted down to the recombination 
era and may well have had an impact on the observed structure formation of the 
later universe. Furthermore, the currents and embedded magnetic fields would be 
expected to expel all the protons and tresinos, those that had not previously become 
rotors, in extended and random patterns across the universe. In addition, these 
protons and tresinos will still have relatively high kinetic energies; these expelled 
protons and tresinos are effectively de-coupled from the remaining ordinary matter 
≈ 5% and the rotors both of which go on to the recombination era. Whereas the 
ordinary matter is coupled together in the photon–baryon interactions, the energetic 
protons and tresinos from the transition are not. Note that there is a big difference 
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Figure 10. Eccentricity ! vs ".

between the local temperature of the ordinary matter during the transition (tens of 
eVs) and the kinetic velocities of the expelled transition protons and tresinos 
(keVs). It seems natural that the extended and random distribution of transition 
protons and tresinos could “seed” the later development of walls and voids in the 
distribution of galaxies (see, for example, Geller & Huchra [14]).

Of course it can be argued that relating the tresino transitions at the corona and 
that of the early universe is arbitrary and there is no influence upon the early 
universe’s later evolution. However, many observations discussed above and in [3]
suggest that the tresino transition resolves many otherwise paradoxical issues. For 
example, the question posed by Steven Weinberg in his book (Weinberg [1], pg. 57) 
regarding dark energy in the Standard Model: “why is the dark energy density 
comparable to the matter energy density at this particular moment in the history of 
the universe?” If our tresino-transition picture is correct, then there is no dark 
energy, only the protons and tresinos that had been broadly dispersed after the 
transition. Note from Fig. 10, drawing a vertical line at # ≈ 4.4, for the case 
without gravity, gives this component to be about 70% of the mass converted in the 
transition and about 25% having been transformed into rotors. The partitioning 
could therefore have existed since $ ≈ 105 down to the present time; the 
partitioning simply resulting from the collision dynamics as shown in the next 
Section.

9. Dark rotors as a fraction of proton–tresino collisions

Interestingly, the number of rotors may be understood from the dynamics of 
tresino–proton collisions. Recall that the tresino phase-transition produced protons 
and tresinos in roughly equal numbers each having kinetic energies of about 
1.9 keV. These two particle types have closely the same mass but opposite net 
charge (positive protons and negative tresinos). Furthermore, because they are 
attracted to each other, they undergo collisions. It is useful to determine in such 
collisions, how many find themselves in bound elliptical (some circular) orbits. 
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These collisions are well known in the two-body central-force problem (familiar in 
celestial mechanics) discussed in numerous textbooks (Landau & Lifshitz [15]). An 
essential result of the dynamics of the central (inverse-square force law, i.e., Kepler 
problem) can be divided by the equation for the eccentricity, !, of the orbit. This 
equation is:
!2 = 1 + 2"#2∕$%2

where ", #, $ are the center of mass kinetic energy, angular momentum, $ is the 
reduced mass (here &'∕2), and %2 = (2, the square of the electronic charge. Note 
that the collision dynamics are separated by the value of the eccentricity !: ! < 1
for a circle or an ellipse, ! = 1 for a parabola, and ! > 1 for a hyperbola (see 
Fig. 10). Recall that the energy is negative in the case of bound states, those that 
become rotors.

Now, normalizing the equation for ! in terms of the maximum kinetic energy in 
units of "0 = 3.8 keV and the angular momentum in units # = ) ℏ to give,
!2 = 1 + 0.3("∕"0))2 = 1 + +

with + = 0.3("∕"0))2. As usual, at sufficiently large ) , the collisions are 
hyperbolic and only for small enough energies are there bound ellipses.

It is easy to compute the number of bound states by integrating ! ,′ where ,′ is 
the distribution of possible collisions (here assumed constant) from + = −1 to + =
0. The result is 2∕3 ,′. On the other hand, integrating ! ,′ from + = −1 to say + =
1.5 gives 2.635 ,′ so the bound fraction of the collisions is about 0.25; all other 
collisions, outside this region, will escape. Of course a larger or smaller value of 
the upper integration limit will change the ratio; but this is a reasonable value. The 
significance of this calculation is that in the proton and tresino collisions roughly 
25% become bound in either circular or elliptical orbits and are removed from the 
cosmic plasma whereas the others are free to expand retaining their kinetic energy. 
Therefore, as the cosmos continues to expand, instead of containing only the flows 
of protons and tresinos, it also contains the bound proton–tresino molecules 
(PTMs) that continue to spin-down into rotors; also roughly 75% of protons and 
tresinos ultimately expand, at later times, too very low densities as suggested in the 
previous section.

The so-called dark matter then represents all the protons and tresinos that have 
become bound states during collisions during and after the tresino transition that 
took place about 300 years after the big-bang. On the other hand, dark energy is 
composed of all other protons and tresinos that have not become bound and have 
continued to expand along with the cosmic expansion. However, the unbound 
protons and tresinos will expand at considerably higher speed than the ordinary 
matter plasma and bound rotors. Furthermore, note that these dark matter and dark 
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energy fractions apply to the early universe as well as in the corona of the Sun, the 
latter with its clearly evident streams of charged-particles and currents (Fig. 9).

Finally it is important to realize that our dark energy (free keV protons and 
tresinos) have no excited states hence they are truly “dark”. Our dark matter 
particles (the rotors) are almost completely “dark” too, except for weak extinction 
and rotational re-radiation (see Section 4).

10. Discussion and conclusions

This paper has shown that a number of otherwise problematic observations in 
astrophysics and cosmology can be resolved by understanding late-time 
interactions involving dark rotors, some of which may be still spinning-down after 
having been produced in the tresino-transition, late in the early universe.

Rotor-rotor collisions have been examined in order to consider rotor 
survivability in the present era. The density of dark rotors in our galaxy has been 
extracted from the 2175 Å resonance extinction-line assuming it is due to the 
almost completely spun-down rotors. The results are shown to be consistent with a 
large volume of low-density rotors distributed, more or less spherically, and having 
a length-scale larger than the dimensions of our Milky Way galaxy. It was also 
shown that the tresino-transition modified the expanding universe by separating the 
proton and tresino components into two groups, those that formed dark rotors and 
those that were dispersed by the self-forces of the currents and magnetic fields that 
may have later created sites for seeding dispersed larger-scale structures.

The connection between the tresino transition late in the early universe and that 
of the solar corona has been detailed further. In the tresino transition, only a 
fraction of the transition energy produces rotors while the remainder generates 
streams of keV protons and tresinos and their magnetic fields; a situation that must 
obtain in both cases. The solar corona may very well tell us much about the early 
universe phase transition.

A distribution of rotor impact parameters was introduced giving spin-down 
times until the present era; it reasonably accounts for the number of rotors still 
spinning-down. The rotors have been shown to produce a reduction of distant 
supernovae luminosity. With the tresino phase-transition in a critically-dense 
universe along with luminosity reduction of supernovae observations by the 
late-time rotors, there is no need for some unidentified form of dark energy. 
Furthermore, because the tresino-transition and critically-dense universe, accounts 
for all the mass in the universe, both seen and unseen (in CMB data), there is no 
need for some unidentified form of dark matter.
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