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Abstract. A simple, similarity model is developed to model the explosive hydrodynamics and radiation of a
supernova. The model has two periods of energy release, an earlier one representing the initial nuclear explosion
or gravitational collapse, and a later one representing the longer-term radioactive decay energy. Because the model
conserves mass, momentum and energy, the overall dynamics and the scaling connections between key variables
is expected to be fairly accurate. The model is used to calculate luminosity versus time curves for a number of
typical type I supernovae and compared with recent data from the Supernova Cosmology Project.
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1. Introduction

The mechanisms that produce a supernova and its long pe-
riod of intense light emission are believed to be thermonu-
clear explosion (type I) or gravitational collapse followed
by an intense shock wave (type II), which in turn produce
radioactive nuclei in the interior regions of the star. In or-
der to evaluate the validity of these mechanisms one needs
a physical model that can test a range of values for the
relevant parameters involved. There are a number of su-
pernova models in the literature, notably those of Arnett
(1996), which allow calculations of the luminosity (“light
curves”) of supernovae and comparison to data. Many in-
volve detailed (sometimes lengthy) computer calculations,
but a number of authors have introduced simplications
and obtained “analytic” solutions (see e.g., Blinnikov &
Popov 1993; Pinto & Eastman 2000). These analytic mod-
els have allowed parametric studies of some of the variables
that influence the supernovae light curves. However, all
of the models in the supernovae literature are sufficiently
complex as to make comparison with data the domain of
a specialist.

It occurred to us that a simple self-similar hydro-
dynamic model might be useful, not only to the non-
specialist, but also to the observational astronomer who
wants to make data comparisons between different su-
pernova explosion parameters. Similarity solutions of this
type have been made for various problems involving spher-
ical explosions, e.g., Sedov (1959), Zeldovich & Raizer
(1967), Mayer & Tanner (1981) but most have not in-
cluded an internal energy source. In the present paper, we
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consider a spherical explosion with two periods of energy
release: one with a short time constant representing the en-
ergy of thermonuclear explosion or gravitational collapse,
and the other with a longer time constant compatible with
radioactive decay heating.

In this self-similar model we ignore small-scale mo-
tions, and model the large-scale dynamics with a solu-
tion to the spherically symmetric hydrodynamic equations
which uses a Gaussian density profile ρ(r, t) and a linear
velocity profile v(r, t), with a time-dependent scale-length.
In this way, we convert the hydrodynamic equations into
a set of ordinary differential equations in one independent
variable, time. The results of this analysis are used to cal-
culate and compare with the light curves of some recently
recorded type I supernovae.

2. Derivation of the similarity model

We consider a spherically-symmetric explosion. We choose
to satisfy the hydrodynamic equations with

ρ(r, t) = ρ0 [exp−(r/rs)2] y−3 v(r, t) = (r/rs) ṙs (1)

where

rs = rs(t) = r0 y(t). (2)

Here r0 is the starting radial density scale of the exploding
material and the time dependence of the scale-length is
found by determining y(t) from energy conservation.

By using a Gaussian profile, i.e., exp[−(r/rs)2], to de-
scribe the density variation in the star, we find that a
sphere of radius rs contains about 43 percent of the mass
of the star, we find that a sphere of radius 2rs contains
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about 95 percent of the mass. If we assume the progen-
itor star was in radiative equilibrium with p ∝ ρ

4
3 , then

from the Lane-Emden equation (see Chandrasekhar 1958)
one gets a density profile for the star. If Rs is the radius
of this star, then by fitting the density to the Gaussian
profile one finds that rs = 0.236Rs.

Some properties of the Gaussian model: the total mass
M0 of the star and the gravitational energy per unit mass
(GPE) are

M0 = π
3
2 ρ0 r

3
0 GPE = −GM0/

√
2 π rs (3)

where G is the gravitational constant. The gravitational
force per unit volume is

Fg = −[Gρ(r)/r2]
∫ r

0

4πρ(r′) r′2 dr′. (4)

The gravitational force is the one quantity that is not self-
similar in this model, i.e., this force does not tend to main-
tain the Gaussian shape. However, it does do so at small
r. Equation (4) can be written as

Fg = −GM0
ρ(r)
r2
s

g(x) (5)

where

g(x) =
[
Erf(x)− (2 x/

√
π) exp(−x2)

]
(6)

and x = r/rs. The function g(x) is linear for small x and
can be approximated by a linear function out to x = 1
after which there is substantial deviation. Now, the grav-
itational decelerating force is not the major force acting
here, and it is only important in the very early stages of
supernova expansion. We propose, therefore, to use the
linear approximation for g(x) throughout, thus allowing
it to be used in the similarity solution;

g(x) = 4 x/3
√
π. (7)

However, we use the exact expression for the gravitational
potential energy, Eq. (3).

The internal energy (per unit mass) is taken to be

Ω(r, t)
ρ(r, t)

=
3
2
θ(t)
mi

+
a θ4(t) y3(t)

ρ0
(8)

where a is the radiation constant, and the pressure p(r, t)
is

p(r, t) = ρ(r, t)
[
θ(t)
mi

+
a θ4 (t) y3(t)

3 ρ0

]
(9)

where θ(t) is the central temperature of the star. Since the
spatial dependence here (and below) has been removed, we
will drop the (t) notation from y(t), θ(t).

The functional forms from Eqs. (1) and (2) conserve
mass. Substituting them into the radial momentum equa-
tion

ρ
dv
dt

= − ∂p

∂r
+ Fg (10)

where Fg is given by Eqs. (5) and (7), we obtain an equa-
tion for the temperature (in energy units) in terms of the
function y:

θ +
1
3
ami θ

4 y3

ρ0
=

mir
2
0

2
[
y ÿ + 1/(τ2

g y)
]

(11)

where the dots are time derivatives, mi is the mass of
an average ion in the exploding material and 1/τ2

g =
(4/3
√
π)GM0/r

3
0.

The problem is completed by specifying the energy
sources driving the explosion and examining the energy
conservation equation (per unit mass) which is given by

d
dt

(
3
2
θ

mi
+
a θ4 y3

ρ0

)
− p

ρ2

∂ρ

∂t

− d
dt

(
GM0√
2π r0 y

)
=

ε̇(t)
mi

(12)

where we have taken the energy deposition to be propor-
tional to the density. We choose the energy release rate
per particle to be

ε̇ (t) = (ε1/t1) exp (−t/t1) + (ε2/t2) exp (−t/t2) (13)

where t1 and t2 are the mean times for the two energy-
releasing processes. ε1 represents the energy supplied by
either the nuclear explosion or gravitational collapse, and
ε2 represents the longer term radioactive energy. We ne-
glect surface radiation loss in Eq. (12); it is a small con-
tribution to the overall energy balance. Equation (12) can
be written

θ̇ [1 + ∆ (θ, y)] =
2
3
ε̇ − ẏ θ

y
[2 + ∆ (θ, y) ]

− 2miM0G ẏ

3
√

2 π r0 y2
(14)

with

∆ (θ, y) ≡ 8 ami θ
3 y3

3 ρ0
· (15)

Equations (11) and (14) form a set of coupled ordinary
differential equations which can be integrated numerically
subject to the initial conditions: y(0) = 1, ẏ = 0, and
θ(0) = θ0. Note that Eq. (11), expressing momentum bal-
ance, determines the initial temperature θ0 of the progen-
itor star assuming ÿ = 0.

Before proceeding to the integration of the ordi-
nary differential equations, we introduce some normalized
units. The mass and radius of the progenitor star in units
of the sun’s mass and radius is Mpg = M0 = mM�
and Rpg = r R� (the parameter r should not be con-
fused with the radial coordinate). The Gaussian “ra-
dius” for the progenitor having mass equivalent to that
of the progenitor, r0 = 0.236 rR�. The progenitor’s cen-
tral density ρ0 = 13.58mM�/(r R�)3. Having chosen a
mass and radius for the progenitor, we calculate the GPE
from Eq. (3) as GPE = 6.43 1048m2/r ergs. Further,
we relate the supernova explosion energy to a multiple
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Fig. 1. A representative similarity model calculation of the
normalized radius y(t), the normalized velocity ẏ(t), and the
temperature θ(t), versus time. The parameters (see text for
definitions) were: m = 1.6, r = 0.017, ν = 1.7, t1 = 1400, δ =
0.00255, τ = 1, η = 2

of the GPE as Esn = νGPE which is also related to
ε1 = miEsn/M0. We relate the later radioactive decay
energy to the supernova explosion energy as ε2 = δ ε1.
Finally, we take the decay time in terms of the 56Ni decay
time, t2 = τ tNi = τ 760 320 s.

Now, it is believed that the long-period energy release
in supernovae comes from the radioactive decay of 56Ni
followed by the decay of daughter 56Co. The mean life
of 56Ni is 8.8 days and the mean life of the daughter is
111 days. Because of the well-known gamma-ray trans-
parency issue (see Arnett 1996), we do not expect the
mean life of decay for the light curve to be a simple
amalgamation of the Ni-Co decays, but rather somewhat
shorter (see below).

Returning now to the ordinary differential equations,
Eqs. (11) and (14), and using the definitions above, we
have made numerous numerical integrations of this sys-
tem using Mathematica (1999) for stars typical in size and
mass of type I supernovae. For example, Fig. 1 shows the
results of one such integration for an m = 1.6, r = 0.017
progenitor with ν = 1.7. The radius and velocity are
obtained by multiplying y and ẏ by r0 = 2.8 108 cm.
The temperature θ(t) is in eV and to begin the inte-
gration a root finder is used to determine the starting
θ0 = 616 300 eV required for momentum balance in
Eq. (11). We note that the temperature determined from
our momentum balance is in reasonable agreement with
Chandrasekhar’s polytropic temperature for the radiative-
equilibrium, progenitor star.

We now calculate the luminous power radiated using
the fourth power of the surface temperature and the sur-
face area which is proportional to y2. Our model gives
a surface temperature in terms of the central tempera-
ture; however, it is not accurate because the actual surface
temperature depends upon the star’s internal structure,
specifically the opacity of the star. Instead, we choose to
use a relationship suggested by Zeldovich (1967) which ex-
presses the surface brightness temperature of an optically
thick radiating body of dimension xs in terms of its central

temperature θ:

θbr = (`/xs)1/4 θ (16)

where ` is photon mean free path. Chandrasekhar (1958)
gives the opacity κ1 = κ0ρ/θ

7/2 and the mean free path
goes as ` = 1/κ1ρ. We take the dimension xs(t) = η rs(t)
with η = 2. Finally, to keep the brightness temperature
from becoming larger than the central temperature when
the density becomes very low, we impose a limit by setting

θbr =
(`/xs)1/4

[1 + (`/xs)]
1/4

θ· (17)

Before we calculate the supernova’s luminosity as a func-
tion of time, we model the so-called gamma-ray trans-
parency issue (see Arnett 1996). Up to this point, the
model permits all of the radioactive energy produced to be
absorbed. However, when the debris density becomes suf-
ficiently low, some of the gamma-ray energy escapes and
doesn’t contribute to driving the expansion. Therefore,
we multiply the radioactive-decay, energy term (ε2, t2) in
Eq. (13) by an absorption fraction given by

A(t) =
[
1− exp

(
−κ

∫ ∞
0

ρ dr
)]

(18)

where κ is an energy-averaged (gamma-ray) absorption
coefficient. Using the model’s Gaussian density profile the
integral can be done, yielding

κ
√
πρ0 r0/2 y2 ≡ K/y2. (19)

Hence,

A(t) =
[
1− exp

(
−K/y2

)]
. (20)

In effect, this procedure modifies the time constant of the
radioactive energy production in the expanding star, so
that a fit of the model to the experimental data will yield
an effective value of t2 that is smaller than the radioactive
decay time constant.

This completes our similarity model for calculating the
light curves from the supernovae. We now apply the model
to recent data on type I supernovae from the Supernova
Cosmology Project (1998) (SCP).

3. Extracting parameters from the data

The SCP has recorded light curves from a number of
type I supernova observations. We have chosen to ex-
amine the data which we refer to as the “orange” data
set (the highest luminosity data set of the observa-
tions) and the “green” data set (the lowest luminosity
data set). We “read” the data points from the orange
and green sets from the SCP website with some asso-
ciated errors not easily estimated. The apparent mag-
nitudes MV , were converted to luminosity assuming a
Hubble constant h = 65 km s−1/Mpc and L(MV ) =
3.07 1035 exp (−0.921MV ). The luminosity data do not,
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Fig. 2. The SCP orange (higher power points) and green
(lower power points) data sets along with the best fits from
the similarity model (lines). The orange fitting parameters
were: m = 1.85, r = 0.018, ν = 1.58, ρ0 = 2.1 107, θ0 =
627 171 eV, A = 20, t1 = 2000, ε1 = 10.4 MeV, δ = 0.0036, κ =
0.0009, η = 2, t0 = −19 days, τ = 1, and the green fitting pa-
rameters were: m = 1.2, r = 0.012, ν = 1.7, ρ0 = 5.5 107, θ0 =
752 675 eV, A = 20, t1 = 1200, ε1 = 10.9 MeV, δ = 0.0023, κ =
0.0009, η = 2, t0 = −15 days, τ = 1

of course, have a zero time indication so there is some lat-
itude in extracting the model parameters by adjusting the
zero-time point. Also, the similarity model allows a choice
of parameters that may be varied and a radiated power
profile to be calculated. Therefore, a number of integra-
tions were required to find the approximate values of the
progenitor’s mass and radius. These set the energy scale
necessary to explode the star. After adjusting the mass
and radius and adjusting the ratio of explosion energy to
GPE, the ratio δ = ε2/ε1 can be varied to get the ap-
proximate magnitude of the luminosity correct. There is
some sensitivity to the choice of t1 as well, but values be-
tween 1000 and 2000 s seemed to give the best fits and are
appropriate for stars of this size.

Our best fits to the SCP orange and green data sets
are shown in Fig. 2; the best fit parameters are shown in
the figure caption. Notice that the green data seem to rep-
resent a supernova from a rather small progenitor actually
somewhat under the Chandrasekhar limit. Also, average
energy per ion ε1 is about 10.5 MeV, and the ratio of ex-
plosion energy to the GPE for both cases is similar. We
found that the parameter space allowing a “fairly good”
fit was rather limited, both by requiring smaller stars and
the choice of energy ε2 for the later radioactive decay lu-
minosity. Finally, the large number of digits in the initial
temperature is a result of the fact that without sufficient
precision at the start of the integration, the numerical
noise makes the system unstable and usually fails.

The model-fitting integrations run quickly on a PC so
that a large number of comparisons to the observed light
curves can be performed without invoking more complex
(and lengthy) programs.

4. Discussion

The model described above results in a simple set of ordi-
nary differential equations which are easily solved numer-
ically. Each example can be integrated on a modest PC
with, e.g., Mathematica, and plotted in less than a minute.
This permits the possibility of carrying out a number of
detailed parametric studies. Since our model effectively
decouples the spatial and temporal variables, modifica-
tions to the model can be made easily as was done, for
example, in the case of the gamma-ray transparency prob-
lem. The model has clear limitations and is not a sub-
stitute for full radiation-hydrodynamic codes. However,
because it conserves mass, momentum, and energy, the
dynamic results and scaling connection between param-
eters are expected to be fairly accurate. The price paid
for the model’s simplicity is the lack of detailed knowl-
edge of energy transport and of temperature-dependent
energy-producing reactions throughout the star.

We have limited our numerical studies to type I super-
novae. We have found that to obtain physical solutions to
the equations the mass of the progenitor star should be
m ≥ 1.2 and that these small stars also need a small initial
radius r ≈ 0.012. The energy Esn must exceed the GPE
in order for the expansion to proceed, and it must exceed
that energy by about 20 percent or more to avoid initial in-
stabilities in the early stages of expansion. Although this
self-similar model is not a substitute for detailed three-
dimensional hydrodynamic and radiation transport stud-
ies, we feel that it should be useful in providing a frame-
work for setting up such calculations and for analyzing
experimental data.

The model, with a few changes in the starting param-
eters, should also be suited to study type II supernovae
light curves.
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